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Abstract

This paper estimates the dynamic returns to job training. We posit a model of sequential
training participation, where decisions and outcomes depend on observed and unobserved char-
acteristics. We analyze different treatment effects, including policy relevant parameters, and
link them to continuation values and latent skills. The empirical analysis exploits administra-
tive data combining job training records, matched employee-employer information, and pre-labor
market ability measures from Chile. Although the average returns to training are small, these
vary across the unobserved ability distribution and previous training choices. In fact, among
young workers, the returns to training are lower when followed by additional training, provid-
ing evidence of dynamic substitutability. Policy experiments illustrate how increasing the local
availability of training programs may affect earnings heterogeneously across dynamic responses.

1 Introduction

The evolving complexity and uncertainty in the demand for skills in a changing labor market
induces workers to constantly revise their human capital investment decisions. Recent research
has documented workers may possess different sets of competencies vis-á-vis those required in the
workplace.1 In this context, understanding the dynamics of training decisions and their associated
returns has gained prominence over the past years: as fast technological progress shifts the set of
skills that jobs demand, workers may participate in on- or off-the-job training multiple times in
their careers.

This paper estimates the returns to job training in a context of dynamic training choices and
labor market outcomes. We use our framework to provide new insights into the static and dynamic

*Jorge Rodŕıguez, Universidad de los Andes, Chile; email: jrodriguezo@uandes.cl; Fernando Saltiel, Department of
Economics, McGill University; email: fernando.saltiel@mcgill.ca; Sergio Urzúa, Department of Economics, University
of Maryland and NBER; email: urzua@econ.umd.edu. We thank Matias Cattaneo, Xavier D’Haultfoeuille, Claudio
Ferraz, Maurice Kugler, Thomas Le Barbanchon, Lance Lochner, Matt Masten, Arnaud Maurel, Oscar Mitnik and
Gabriel Ulyssea for useful comments and suggestions. We are indebted to seminar participants at IZA/CREST/OECD
Conference on Labor Market Policy Evaluation (2018), George Mason University (2018), Latin American Meeting of
the Econometric Society (2017), RIDGE Impact Evaluation of Labor Market Policies Conference (2017), PUC-Chile
(2017), Banco de Desarrollo de America Latina (2016), PUC-Rio (2016), and LACEA-LAMES (2016). We thank the
Ministry of Finance of Chile for providing us access to the data used in this paper.

1Guvenen et al. (2020), Lise and Postel-Vinay (2020), Lise et al. (2016), and Saltiel et al. (2018) discuss skill
(mis)match in the labor market. See Autor et al. (2003), Spitz-Oener (2006), Ingram and Neumann (2006), Acemoglu
and Autor (2011), and Sanders and Taber (2012) for a literature on the changing returns to specific skills.
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effects of job training on earnings, including the identification of heterogeneous responses across
different groups as well as an empirical assessment of continuation values and dynamic comple-
mentary (substitutability) arising from repeated training participation.2 Ultimately, we not only
document who benefits from training but also how the timing and sequence of the training deci-
sions define potential and actual gains (and losses). Furthermore, we present and estimate dynamic
policy relevant treatment effects, which consider how policy changes in one period affect long-term
earnings by potentially altering workers’ present and future training decisions.

We follow Heckman and Navarro (2007) and Heckman et al. (2016) to estimate a dynamic-
discrete choice model of job training. In the model, a worker must decide whether or not to
take part in a training course across multiple periods, and workers may participate in training on
multiple occasions. For a given training history, and conditional on firm characteristics, the agent
chooses to participate in a job training course if the perceived net benefits are positive. Individual
choices and outcomes depend on observed characteristics as well as on unobserved heterogeneity.
We allow potential outcomes in period t to vary depending not only on current training choices but
also on all possible past choices the individual has made up to period t−1, thereby letting earnings
to follow a flexible state-dependence process. As in Heckman et al. (2016), the joint distribution
of counterfactual earnings across potential training histories is nonparametrically identified given
a factor structure, in which a finite set of unobserved traits drives the correlation of unobservables
across training choices and outcomes. By using a measurement system of pre-labor market test
scores and pre-training wages, we are able to nonparametrically identify the distribution of two
unobserved factors, which encompass workers’ latent ability and productivity. Exclusion restrictions
are further exploited to identify policy-relevant parameters.

We implement our framework in the context of a large-scale training program in Chile called
“Franquicia Tributaria” (FT). FT fully subsidizes training courses at off-site providers for workers
who are employed in a formal-sector firm. In the program, a worker can participate in a training
course on multiple occasions, and almost half of workers do so. We take advantage of administrative
data on job training records for the population of labor market entrants from years 2003-2008 and
combine it with matched employee-employer data on labor income. We augment these data with
measures on workers’ pre-labor market abilities coming from college admission test scores. Since
workers with no prior job training experience may find it especially valuable to take up job training,
as they anticipate higher returns to human capital investments, we analyze the earnings returns to
training for first-time labor market entrants.

Using the estimated model parameters, we document static and dynamic treatment effects of
job training. We first examine the effects of training on workers’ earnings in the first two years in
the labor force. The static returns to training indicate that program participation in the first year
raises average monthly earnings by 2.5%. Meanwhile, the returns to second-period participation
differ across first-period histories, reaching 4% for non-trained workers while remaining below 1%
for first-period trainees. To consider the dynamic returns to training, we assess the impact of first-
period training on present discounted value of earnings across two years. The dynamic average
treatment effect (DATE) indicates that first-period training increases the present value of earnings
by 4.4%. We examine the mechanisms through which early training delivers positive medium-term
impacts by decomposing the DATE parameter into the direct effect of training and its continuation
value, which links human capital investment decisions and potential gains over time. We find that
while the short- and medium-term direct effects are positive and significant, the continuation value

2Formally, if we let Yt be earnings at the end of period t, the production function of Yt exhibits dynamic
complementarity (substitutability) if the return to Dt (training participation at time t) is higher (lower) conditional

on prior training participation, i.e. ∂2Yt
∂Dt−1∂Dt

≥ (≤)0.
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is not statistically different from zero. Furthermore, we find evidence of dynamic substitutability,
as training in the first period reduces the earnings returns to training in the second period. We
note that dynamic substitutability may be explained by the structure of the job training courses
examined in this paper, or more generally by the production function of post-schooling human
capital accumulation. These results indicate that the post-school human capital production function
differs from that of school-age children, which instead exhibits dynamic complementarities (Cunha
et al., 2006; Johnson and Jackson, 2019).

To examine the policy implications arising from these results, we estimate the effect of an
increase in local course-hour availability. As this policy may affect workers’ choices in both years,
we identify dynamic response types, defined by the reactions to the policy change in each time
period. For instance, we can identify a group of workers who are induced to participate in training
in both time periods due to the policy change, despite being baseline never-participants. We find
that a 10% increase in course availability would increase the medium-term earnings of affected
workers by 3.8%. Moreover, we find similar-sized impacts for larger program expansions, yet
document that the effects are heterogeneous across dynamic response types, as workers induced to
participate in both periods would enjoy the largest gains from the policy change.

Our paper contributes to an extensive literature analyzing the effect of job training programs on
labor market outcomes. In a non-experimental context, the inherent identification challenge arises
from potential self-selection into training. To deal with this concern, various papers have relied on
individual fixed effect estimators to account for unobserved individual heterogeneity (Ashenfelter,
1978; Ashenfelter and Card, 1985; Heckman and Hotz, 1989; Lynch, 1992; Booth, 1993; Veum, 1997;
Lengermann, 1999; Frazis and Loewenstein, 2007; Mueser et al., 2007; Albert et al., 2010). While
Heckman et al. (1998, 1999) show that the standard fixed-effect estimator can effectively remove
selection bias, this estimation strategy does not account for dynamic selection into training or esti-
mate heterogeneous returns (Callaway and Sant’Anna, 2020; De Chaisemartin and d’Haultfoeuille,
2020; Goodman-Bacon, 2018). A parallel strand of the literature has estimated the effects of train-
ing using matching estimators (Heckman et al., 1997; Smith and Todd, 2005; Andersson et al.,
2013; Lechner, 2000; Larsson, 2003; Dyke et al., 2006; Lechner and Wunsch, 2009). Our empirical
strategy extends this analysis by allowing for matching on unobserved characteristics, while in-
corporating exclusion restrictions in the training participation decision. Furthermore, we estimate
heterogeneous returns to training across workers’ unobserved heterogeneity and allow for the effects
to vary across training histories and time periods, extending in this way the existing job training
literature.

This paper also contributes to a growing literature on dynamic treatment effects. Previous
studies have estimated the dynamic returns to educational attainment, including Heckman and
Navarro (2007), Heckman et al. (2016), and Heckman et al. (2018), among others. To the best of
our knowledge, this is the first paper to estimate dynamic returns to post-schooling human capital
accumulation, in the context of job training for employed workers.3 Moreover, we present the first
estimates of the continuation value and dynamic complementarities of job training, allowing us to
explore how early training affects the returns to additional training stints. By showing that job
training participation exhibits dynamic substitutability, we present a novel difference relative to the
existing evidence on human capital accumulation during formal schooling. Lastly, we contribute
to a growing literature exploring policy relevant treatment effects by defining dynamic response
types and estimating the heterogeneous impacts of a policy change across groups (Heckman and
Vytlacil, 2001, 2005; Carneiro et al., 2010; Mogstad et al., 2018; Mogstad and Torgovitsky, 2018).

3A parallel strand of the literature has estimated dynamic treatment effects in the context of job training for the
unemployed, making these papers different in scope from our analysis (Abbring and van den Berg, 2003; Fitzenberger
and Völter, 2007; Fredriksson and Johansson, 2008; Fitzenberger et al., 2016; Ba et al., 2017).
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We present the first estimates of how increased early-career job training availability may affect
earnings by shifting workers’ subsequent training participation.

The rest of the paper is organized as follows. Section 2 presents a dynamic Roy model and
discusses the relevant treatment effects. Section 3 describes the institutional setup, data sources,
sample characteristics and presents reduced-form estimates. Section 4 specifies our model of se-
quential training participation with unobserved heterogeneity, presents estimated parameters and
documents the implied patterns of selection on unobservables. Section 5 defines the static and
dynamic treatment parameters and presents evidence on the returns to job training. Section 6
discusses the simulated policy intervention, defines dynamic response types and presents evidence
on the returns to the policy change. We conclude in Section 7.

2 Treatment Effect Framework

A Roy model framework helps us to characterize the dynamics of training decisions and labor
market outcomes. It considers training decisions across multiple periods and allows earnings coun-
terfactuals to vary freely across all potential histories of training choices. Within this framework
we define the treatment effects of interest, link them to continuation values, and discuss dynamic
complementarity/substitutability of training investments.

2.1 Dynamic Roy Model

The essence of the model involves an agent making training choices for many periods and earnings,
which directly depend on previous decisions. In any period t, potential earnings depend on her
current training decision as well as on the entire history of training activities.4 In period t, the agent
makes her optimal training decision, and she is allowed to participate in job training as frequently
as desired.

We model the dynamic training decision as a tree of sequential binary decisions, where the
individual chooses training in each stage t ∈ T ≡ {1, ..., T}. We define Ht as the set of all possible
training decisions histories before time t. An element in that set, ht ∈ Ht, represents a specific
training history, not including the training decision to be taken in period t. Thus, h1 is the initial
condition. As workers have not been able to take up training prior to entering the labor force in the
first period, h1 can be characterized by an empty set. To illustrate this notation, Figure 1 depicts
the decision tree for T = 2. In period t = 2, H2 = {0, 1}, where h2 = 1 if the agent was trained in
t = 1 and 0 otherwise. Likewise, H3 = {(0, 0), (0, 1), (1, 0), (1, 1)}, where each element h3 ≡ (l, j)
denotes the training decision in t = 1 and t = 2, respectively.

4We focus on training choices for workers who do not fall into unemployment. We thus abstract from modeling the
employment decision, which could affect the probability of training. We note the model could generally accommodate
unemployment as an outcome variable, however.
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Figure 1: Decision Tree
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Note: In Figure 1, we present the decision tree through which workers decide whether to participate in training in each of their
first two years in the labor force. In each node, we include the observed share of workers in our sample who decide to participate
in training.

At each choice node, agent i compares the benefits and costs of the available alternatives to make
her next training choice. Let Di(ht) be her training decision in period t given history ht ∈ Ht.
Di(ht) equals one if she decides to participate in a training program, and zero otherwise. Her
optimal choice is given by:

Di(ht) =

{
1 if Ii(ht) ≥ 0

0 otherwise
ht ∈ Ht, t ∈ T (1)

where Ii(ht) denotes the value of training in period t for a given history ht ∈ Ht. Ii(ht) may
incorporate non-pecuniary benefits and costs of training. In principle, expression (1) provides a
general framework. It can accommodate, for example, forward-looking agents anticipating and
acting based on present and future benefits of training in period t, who are uncertain with respect
to the true model that generates counterfactual earnings.

We allow for counterfactual earnings to vary by training histories and current choices. The
agent progresses through each node after making training choices, and for each possible choice and
training history, there is an associated labor market outcome. Let Yi(ht; j) be potential earnings
for a training decision j ∈ {0, 1} made by worker i with history ht. As is common in the literature,
it captures workers’ earnings immediately after job training participation. Behind the definition of
counterfactual earnings we implicitly assume that current outcomes do not vary by future choices.
This assumption is referred as the no-anticipation condition and it implies that Yi(ht; j) does not
depend on choices at t′ > t (Abbring and van den Berg, 2003; Fruehwirth et al., 2016).5

2.2 Returns to Job Training

For workers, effective job training participation can have immediate effects on earnings. Using our
notation, we define this (static) individual-level impact as Yi(ht; 1)−Yi(ht; 0). However, job training
may also affect workers’ long-term earnings, both directly, as trained workers have potentially

5This assumption does not rule out a forward-looking behavior; agents can still make predictions about the future
and act on them. However, conditional on a given information set (whatever this is at any given time), potential
outcomes do not vary by future treatment choices.
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accumulated human capital which increases their labor market productivity, but also indirectly, by
shifting workers’ training participation in subsequent periods. To investigate these channels, we
consider the earnings stream of individual i facing the training decision in period t. Formally, let
Ỹi(ht; j) be her present value of earnings associated with training option j given history ht. Thus,

Ỹi(ht; j) ≡ Yi(ht; j) + ρ
[
Ỹi(ht+1; 0) +Di(ht+1)

[
Ỹi(ht+1; 1)− Ỹi(ht+1; 0)

]]
, j ∈ {0, 1}, ht ∈ Ht

ρ is a discount factor, Di(ht+1) takes a value of one if worker i participated in training at t+ 1 and
Ỹi(ht+1; k) captures the earnings stream associated with training decision k at t + 1 given history
ht+1. Thus, individual-level dynamic treatment effect of participating in training in period t can
be expressed as Ỹi(ht; 1) − Ỹi(ht; 0). To understand the different mechanisms through which job
training affects long-term earnings, we follow Heckman et al. (2016) and decompose it as:

Ỹi(ht; 1)− Ỹi(ht; 0) = (Yi(ht; 1)− Yi(ht; 0))︸ ︷︷ ︸
Direct effect (short-term)

+ ρ[Ỹi(h
′
t+1; 0)− Ỹi(ht+1; 0)]︸ ︷︷ ︸

Direct effect (long-term)

+

ρ [Di(h
′
t+1)(Ỹi(h

′
t+1; 1)− Ỹi(h′t+1; 0))−Di(ht+1)(Ỹi(ht+1; 1)− Ỹi(ht+1; 0))]︸ ︷︷ ︸

Continuation value

,

(2)

where the sequences of decisions contained in h′t+1 and ht+1 differ only in the training decision
observed in period t (h′t+1 = (ht, 1) and ht+1 = (ht, 0)). The first two terms of the right-hand side
capture the direct effect of training at t (properly discounted). The first term recovers the direct
effect of training on earnings immediately following participation. The second term represents the
impact of training at time t on lifetime earnings conditional on not taking up training at t+1. This
parameter recovers the direct effect of the baseline training stint without considering additional
gains arising from future training participation. The third term, which recovers the additional gain
(if any) of training in t+ 1 from training in t for those who take up training in t+ 1, corresponds
to the continuation value of job training. As illustrated in Section 4, continuation values can be
defined in settings with at least two sequential training decisions and a resulting outcome.

Since continuation values are informative of how job training may result in an increase in
long-term earnings, they have been previously estimated in the human capital investment lit-
erature (Heckman et al., 2018). However, for an econometrician interested in understanding
whether job training leads to larger/smaller earnings gains arising from dynamic complementar-
ity/substitutability, the continuation value will not directly recover this parameter. To see this,
consider the following decomposition:

Di(h
′
t+1)(Ỹi(h

′
t+1; 1)− Ỹi(h′t+1; 0))−Di(ht+1)(Ỹi(ht+1; 1)− Ỹi(ht+1; 0))︸ ︷︷ ︸

Continuation Value

=

(Ỹi(h
′
t+1; 1)− Ỹi(h′t+1; 0))− (Ỹi(ht+1; 1)− Ỹi(ht+1; 0))︸ ︷︷ ︸

Dynamic Complementarity/Substitutability

+

(Di(h
′
t+1)− 1)(Ỹi(h

′
t+1; 1)− Ỹi(h′t+1; 0))− (Di(ht+1)− 1)(Ỹi(ht+1; 1)− Ỹi(ht+1; 0))︸ ︷︷ ︸

Dynamic Sorting Gains

. (3)

Thus, the continuation value of training equals dynamic complementarity/substitutability plus a
sorting term we label “dynamic sorting gains.” As noted above, dynamic complementarity (substi-
tutability) is informative about the production function of human capital of training across multiple
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periods, exhibiting dynamic complementarity (substitutability) if the return from training in, for
example, t + 1 is higher (lower) conditional on time t participation.6 Therefore, when the contin-
uation value is larger than the dynamic complementarity (substitutability), workers are positively
sorting into training participation (positive dynamic sorting gains).

We have so far discussed individual-level parameters which are informative about the static and
dynamic returns to job training participation. Recovering them is a difficult endeavor as individuals
can endogenously sort into training based on (observed and unobserved) potential benefits, and may
do so across multiple time periods. We further note that both training participation and the returns
to training may directly depend on workers’ underlying baseline productivity. For instance, less
productive workers may be more likely to take up job training, while enjoying the largest returns
from program participation. As a result, any empirical strategy must account for endogenous
dynamic program participation, consider the heterogeneous returns to job training, and estimate
the different parameters introduced in this section to correctly capture the various benefits arising
from job training. In Section 4, we introduce a dynamic discrete choice model of job training
participation decisions. In this model, we proxy for baseline productivity using measures of pre job
training ability, allowing us to estimate heterogeneous static and dynamic returns to training as
well as policy-relevant treatment effects. In the next section, we present our data sources, introduce
the training program under consideration and examine whether reduced-form strategies can recover
static and dynamic returns to training.

3 Background and Descriptive Analysis

3.1 Institutional Context

In this paper, we examine the effects of a nationwide funding scheme for job training programs called
Franquicia Tributaria (FT) in Chile. The program funds training courses for a significant number
of workers in the country in any given year through a large-scale subsidy for training expenditures
undertaken by firms.7 As a result, the program targets formal-sector workers. While all workers
are theoretically eligible for the program, the design of the funding scheme implies that those at
larger firms are more likely to participate in training through FT.8 Training courses are held off-the-
job, in centers managed by private providers.9 There are three types of training courses covered
by FT: (i) short-term courses, including industry-specific programs (such as learning to operate
heavy machinery), general-skills courses (such as Microsoft Excel courses), as well as programs
focused on soft skills; (ii) short-term degrees leading to specialization in specific disciplines; (iii)
professional conferences.10 The predominant role played by the private sector in training course

6To relate to the definition of Heckman and Mosso (2014), we have dynamic complementarity (substitutability)
if ∂2θt+s+1/∂It∂It+s is positive (non-positive), where θt is a type of skill and It is human capital investment. We
follow this definition but adapt it to the case of discrete investments.

7In 2010, FT funded training courses for 920,688 workers, covering 12% of the labor force. Using data from
Chile’s national accounts, we estimate the total cost of FT to be 0.08% of GDP.

8FT subsidizes firms through a tax exemption, with a cap set at 1% of the firms’ annual payroll. The government
subsidizes 80% of the total cost of courses, making FT courses relatively inexpensive for firms. The structure of the
FT subsidy implies that the cost to medium- and large-sized firms is significantly smaller than for firms with less
than ten employees. Since our model examines the extent to which workers self-select into training, we restrict our
attention to workers employed at firms facing negligible costs for FT courses.

9There are over 15,000 providers in the market. Courses are generally scheduled after-work and on weekends,
ensuring they do not interfere with regular work schedules.

10Courses of type (i) and (iii) must be of five hours at least while courses type (ii) must be over 100 hours. In
2009, the duration of the average job training course was 19.3 hours.
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provision under FT resembles that of the Workforce Investment Act (WIA) in the United States.11

While the workers targeted by the FT program are different than those in the WIA, our analysis
speaks to the effectiveness of short-term courses that are also commonly used in other contexts.

3.2 Data Sources

To recover training histories and associated labor market outcomes, we construct a novel database
that merges three different sources of information. First, we take advantage of administrative
records from Franquicia Tributaria. Using this data source, we construct workers’ training histories
by observing their participation in FT-subsidized courses from 1998 through 2010.12 We analyze
labor market outcomes using information from Chile’s Unemployment Insurance (UI) system. UI
data registers workers’ monthly earnings and the firm of employment for all workers with formal
sector contracts. We focus on the worker’s main employment stint in each quarter and examine
earnings in the first quarter of the year following the training event. For notational simplicity, we
refer to the outcome variable as contemporaneous with the training event at time t. Lastly, our
final source of information comes from performance in a college-entry examination (PSU), which is
a mandatory test for all students who wish to enter a post-secondary institution. We observe PSU
scores for all high school graduates who took the test between 2000 and 2007. Using individual
identifiers, we recover PSU scores of workers to supplement our data of labor market outcomes and
training choices. We work with standardized PSU test scores (computed separately by year). The
PSU database also includes information on student’s observable characteristics, such as gender,
age, parental education, family size, and parental employment at the time of the test.

To circumvent threats to identification and for computational tractability, we restrict our sample
in several ways. First, we focus our attention on the returns to multiple job training courses
for young workers who are first-time labor entrants. We impose this restriction as we do not
observe training histories before 1998; if training choices depend on prior training decisions, then
we would be omitting a relevant variable—past training—in the choice equation.13 We use the
sample of young workers, identify their first year of employment, and follow their labor market
history thereafter—by definition, their job training history in our first period is zero.

Second, for tractability, we restrict our analysis to training stints during their first two years
in the labor force and examine extensive-margin training decisions on a yearly basis. As a result,
workers are trained at most twice during our period of interest.14 Third, we restrict the sample
to individuals who are eligible to participate in training financed by FT—that is, individuals who
work in the formal sector. As our analysis of worker self-selection into training requires workers to
be able to take part in courses each year if they want to, we limit the sample to individuals who are
employed for at least nine months in each of their first two years in the labor force in firms with at

11One of the main goals of the WIA, was to strengthen the role of the private sector (Barnow and Smith, 2016).
In practice, the WIA defined individual training accounts (vouchers for training) by which individuals can choose
short-term, off-the-job, training courses held in private providers (Andersson et al., 2013).

12Despite the heterogeneity in course-types discussed above, our data does not include information on the types of
courses taken by workers. As such, we are unable to directly model the impact of different course types and intensities
on labor market outcomes.

13This omission could influence the estimation of the distribution of unobserved heterogeneity. See Heckman
(1981) and Arellano and Honore (2001) for a related discussion. We remark that given our focus on labor market
entrants, our results may not generalize to an older sample of workers.

14A longer panel increases the number of counterfactual outcomes to identify and the associated parameters to
estimate; the computational costs of estimating the effects of training increases exponentially with the number of
periods considered. Thus, we chose to work with the minimum number of periods that enable us to identify dynamic
treatment effects. As argued, even with this simple model, we can study rich dynamic effects, including dynamic
complementarities and dynamic policy-relevant treatment effects (see Sections 5 and 6).
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least ten employees. Since UI data indicates that 90% of formal-sector employment in Chile is at
firms with at least ten employees, this restriction is not necessarily binding. In this way, we analyze
a group of workers who are effectively eligible for training each year. By doing so, we abstract from
analyzing effects of training on employment.15 Furthermore, our choice of sample selection limits
the scope of our results: by focusing on young workers starting their careers, our results on static
and dynamic returns to job training might not generalize to human capital investments later in life.
Overall, we focus on labor market entrants from years 2003-2008 and their training choices two
years after entry. Our final sample consists of 37,089 workers who meet all of the above criteria.

Table 1: Summary Statistics

Variable Mean (Std. Dev.)

Male 0.46 (0.5)
Age at Graduation 17.81 (0.64)
Math PSU (Standardized) -0.04 (0.98)
Verbal PSU (Standardized) -0.03 (0.99)
High School GPA (Standardized) 0.01 (0.99)
Initial Monthly Salary (USD) 462.93 (277.8)
Monthly Salary after First Year (USD) 551.04 (333.4)
Monthly Salary after Second Year (USD) 623.96 (388.31)

Observations 37,089

Notes: Table 1 presents summary statistics of our estimation sample (see Section 3). The dependent variable is the monthly
average of earnings in the first quarter following each training stint. For simplicity, we refer to this variable as concurrent with
the training decision. Tests scores (Math and Verbal) and high school GPA are standardized across the general population of
test-takers to be of mean zero and variance 1.

Table 1 presents summary statistics for our sample. 54% of individuals in our sample are women.
The age at the time of taking the college entrance exam is in line with the average for the country
(close to 18 years old). The average GPA and PSU scores in math and language are largely in line
with the national average. The average monthly salary in the first quarter of the second year in
the labor force equals 551 dollars, reaching 624 dollars after the second year in the labor market.

Table 2 reports summary statistics across workers’ training participation in their first two
years in the labor force. A training group is denoted as h3 = (h, h′), where the first and second
entries denote training participation in the first and second period, respectively (h, h′ ∈ {0, 1}).
The never-trained group is by far the largest in our sample, representing 61 % of all individuals.
This group has a lower PSU and GPA than workers in all other groups, with the largest difference
appearing relative to always-trained workers. The unconditional earnings differential between these
two groups reaches 48 and 45% for the first and second period, respectively. We highlight earnings
differentials across workers trained only in the first year relative to second year trainees, as in a
world of constant returns to training, earnings differentials should not appear for these workers. In
this context, later-trained workers earn higher salaries than early-trainees, despite similar test score
performance. These intertemporal earnings differences across groups with similar stock of training
suggest the presence of different treatment effects of job training over time.

15Our focus on the earnings dimension makes our paper comparable in scope to the on-the-job training literature.
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Table 2: Summary Statistics by Training Node

h3 = (0,0) h3 = (0,1) h3 = (1,0) h3 = (1,1)

Male 0.46 0.46 0.47 0.43
Age at Graduation 17.82 17.79 17.81 17.78
Math PSU (Standardized) -0.10 0.04 -0.04 0.19
Verbal PSU (Standardized) -0.07 0.02 -0.03 0.17
High School GPA (Standardized) -0.01 0.04 0.00 0.14
Initial Monthly Salary (USD) 432.45 489.27 478.09 600.51
Monthly Salary after First Year (USD) 506.00 611.15 566.32 732.64
Monthly Salary after Second Year (USD) 572.32 702.36 640.29 820.12
Average Hours Trained (First Year) 0 0 35.5 37.0
Average Hours Trained (Second Year) 0 31.6 0 40.1

Observations 23675 5306 4360 3748

Notes: Table 2 presents summary statistics of the estimation sample (see Section 3) across different training histories. Training
histories after two periods are given by h3 = (h, h′), where h, h′ denote training choices for period t = 1 and t = 2 (h, h′ ∈ {0, 1}),
respectively.

3.3 Reduced-Form Analysis

The descriptive statistics presented above highlight important differences in baseline characteristics
and outcomes across training participation groups. We examine whether training is associated with
increased earnings by first estimating OLS regressions of the short-term returns to training. We
present the results in the first panel of Table 3. In the first two columns, we examine the returns
to training in the first year in the labor force on earnings in the first quarter of the following
year (defined as Yi1 in Section 2). OLS regressions suggest that training participation increases
earnings by 15-18%, with lower estimated impacts upon controlling for test scores and background
characteristics. We find different effects in the regressions of second-period training on earnings
(presented in columns 3 and 5) as this event increases earnings by 25.7% and 20.9% conditional on
having trained and not trained in the first period, respectively. Nonetheless, upon the inclusion of
control variables, we find similar short-term returns to training, in the 15-18% range.

The OLS estimates presented in Table 3 can only be interpreted as causal based on the strong
assumption of selection on observables. Since this assumption is unlikely to hold, the job training
literature (summarized in Card et al. (2010)) has previously taken advantage of the longitudinal
aspect of the data to estimate the returns to training in the following equation:

Yit = δDit +X ′itβ + αt + κi + εit, (4)

where Yit represents the log of earnings for worker i in the first quarter following year t. Dit is a
dummy that equals 1 if individual i was trained at time t and zero otherwise, αt is a year fixed
effect and κi an individual fixed effect. δ captures the average effect of training on earnings in
period t, yet it does not recover the direct impacts of any particular training event.
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Table 3: Reduced-Form Estimates: Returns to Job Training

Panel A. Short-Term Returns to Job Training

First-Period Earnings (Yi1) Second Period Earnings (Yi2)
(1) (2) (3) (4) (5) (6)

Di1 0.182*** 0.149***
(0.007) (0.006)

Di2(1) 0.257*** 0.161***
(0.013) (0.011)

Di2(0) 0.209*** 0.178***
(0.008) (0.007)

Control Variables X X X

Observations 37089 37089 8108 8108 28981 28981

Panel B. Returns to Job Training: Panel Data Estimates

(1) (2) (3) (4)

Effect of training 0.223*** 0.179*** 0.075*** 0.009***
(0.005) (0.004) (0.003) (0.003)

OLS X
OLS + controls X
OLS + initial wage X
Individual FE X

Observations (N × T ) 74178 74178 74178 74178

Notes: Table 3 presents regressions of log-earnings against a dummy variable capturing job training participation. Control
variables include college entrance exam performance, high school GPA and age. The dependent variable is the monthly average
of earnings in the first quarter following the training period. Panel A presents short-term returns to training, examining how
training in period t affects Yit. Columns (1) and (2) uses all sample to estimate the regression of first-period earnings on
first-period training (with and without control variables). Columns (3)-(6) present second-period earnings regressions onto
second-period training conditioning the estimating samples on first-period training. Panel B considers the effects of training on
earnings, exploiting the longitudinal component of the data. Column (1) presents OLS regressions without control variables.
Column (2) includes PSU test scores, highschool GPA, a gender dummy, age, and age squared. Column (3) includes the
same control variables along with the first monthly salary observed for each worker. Column (4) computes the first differences
estimator. p-values are in parenthesis, where * p < 0.05, ** p < 0.01, and *** p < 0.001.

Panel B in Table 3 presents the estimated results following from different versions of equation
(4). Column 1 shows that concurrent training participation is associated with an earnings gain in
the range of 22%. In the second column, we add control variables and find the returns to training
remain both economically and statistically significant, reaching 18% — similar in magnitude to
the estimates presented for each training event in Panel A. In the third column, we add workers’
first monthly salary in the labor market, observed prior to training choices. The estimated returns
fall to 7.5%. In the fourth column, we estimate a linear regression model with individual fixed
effects. We find that the estimated impact of job training is significantly lower, falling to 0.9%,
though remaining statistically significant. This result fits in with previous findings by Frazis and
Loewenstein (2007), who show that controlling for unobserved heterogeneity through an individual
fixed effect largely attenuates the estimated impacts of training in an OLS regression.

While the fixed-effect estimation in Table 3 may eliminate selection bias, this regression might
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not identify a pre-determined parameter of interest. First, Goodman-Bacon (2018) shows that in
setting where the timing of treatment varies, the usual fixed effect estimator recovers a weighted
average of all possible pairs of the underlying differences-in-differences estimator. Moreover, when
treatment effects are not constant, some of these weights might be even negative (De Chaisemartin
and d’Haultfoeuille, 2020). In the context of our model of choices and counterfactual outcomes,
Appendix A defines and tests the assumptions needed for fixed-effect estimators to recover the
average treatment effect of training. A first-difference estimator recovers the ATE of training only
if: (i) the earnings returns from training are constant across time and training histories and, (ii)
the earnings returns from training do not vary with unobserved ability. In Appendix A, using
our model estimates, we find evidence against the null hypothesis of lack of differential gains at
conventional significance levels. Second, the parallel-trends assumption required for identification
in reduced-form analyses may not hold if agents sort into training based on unobserved gains from
training. Third, even under a parallel trends assumption and assuming a correctly re-weighted
fixed-effect estimator (Callaway and Sant’Anna, 2020), this estimator would not recover direct
effect, continuation value and dynamic complementarity/substitutability parameters presented in
equations (2) and (3). As a result we would still miss potentially important questions for under-
standing the nature of job training programs: To what extent do workers self-select into training
based on unobserved characteristics? What are the dynamic returns to job training? Are there
heterogeneous returns to training across workers’ latent ability? What is the role of continuation
values and dynamic complementarity (substitutability) in the returns to training? To this end, we
present our dynamic discrete choice model in Section 4.

4 Identification and Implementation

This section discusses the model specification, its implementation and identification. We then
present the estimated parameters and analyze the extent of sorting on unobserved ability.

4.1 Model Specification

As discussed in Section 2, individuals decide to participate in job training based on the net value of
training in period t for a given training history ht ∈ Ht, defined by Iit(ht). We model the decision
process using a linear-in-the-parameters index function:

Ii(ht) = XI
i β

I(ht) + ηIi (ht) ht ∈ Ht, t ∈ T , (5)

where XI
i is a vector of characteristics (observed by the econometrician and the agent) and ηIi (ht)

is an individual- and choice-level innovation (unobserved by the analyst). Critical for our analysis,
this last term contains information used by the agent to make current choices (see next sub-section).
We do not explicitly specify individual preferences and expectations formation. Hence, forward-
looking behavior is not imposed in the model. Since we do not model preferences and budget sets,
we abstract away from assumptions about behavior and uncertainty—ubiquitous elements in the
structural literature (Keane et al., 2011).

The potential outcome associated with j ∈ {0, 1} and ht ∈ Ht also depends on observed and
unobserved characteristics, and it is given by:

Yi(ht; j) = XY
i β

Y (ht; j) + ηYi (ht; j) j ∈ {0, 1}, ht ∈ Ht, t ∈ T , (6)

where XY
i is a vector of observed characteristics and ηYi (ht; j) represents the error term, which is
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unobserved by the econometrician but partially known to the agent. In this setup, the effects of ob-
served characteristics and unobserved ability on the value of training and outcomes vary across time
periods and training histories. Both the parameters of the training choice and earnings equation
are allowed to vary with training counterfactual choices. Thus, our model extends the conventional
setting (where past outcomes and choices sometimes enter as lagged variables): choices depend on
past decisions and earnings vary accordingly. Furthermore, the earnings return to different paths
of training choices—defined by ht and j—-vary across the latent heterogeneity distribution. Notice
that

(
ηYi (ht; j), η

Y
i (ht′ ; j

′), ηIi (ht), η
I
i (ht′)

)
are correlated for any potential outcomes defined by j

and j′, histories ht and ht′ , and time periods t and t′. Heckman and Navarro (2007) discuss how
exclusion restrictions can be used to secure the non-parametric identification of general dynamic
discrete-choice models with similar complexities to ours.

4.2 Factor Structure

We start off the identification argument by imposing a factor structure on the error terms. In partic-
ular, we follow a well-established literature and posit that a low-dimensional set of latent variables
(factors) generate dependence across across choices and outcomes for all possible ht (Aakvik et al.,
2005; Carneiro et al., 2003; Heckman et al., 2006, 2016, 2018). Thus, we assume:

ηIi (ht) = θiλ
I(ht) + εIi (ht), (7)

ηYi (ht; j) = θiλ
Y (ht; j) + εYi (ht; j). (8)

where E(θi) = 0 and θi represents a finite set of fixed, latent endowments known by the agent
but not the econometrician, which are independent of observed individual characteristics. εIi (ht)
and εYi (ht; j) are idiosyncratic shocks to the decision process and outcomes, respectively, that the
agent cannot anticipate. As such, these are independent of observed characteristics and θi, and
independent across choices and outcomes as well as across time and training histories.16 In this
way, conditional on XY

i and XI
i , θi generates all cross-correlations of outcomes and choices across

histories. Intuitively, the correlation across unobservables arises only through those components
the individual knows (and thus can act upon them) but not from those who cannot anticipate.
As pointed out in the literature, this setting extends the matching-on-observables assumption by
matching on unobserved heterogeneity.17

Measurement System. We rely on pre-training individual-level human capital measures to
non-parametrically identify the distribution of θ as well as the parameters governing the outcome
equations. Let θ ≡ [θ1, θ2], so we assume a two-factor model. We interpret θ1 as latent ability and
θ2 as unobserved labor market productivity. In what follows, we configure the measurement system
which is the basis of our identification strategy.18

First, we consider a set of K pre-labor market achievement test scores, Tik with k = {1, ...,K}.
In our application, these correspond to the results in college admission tests and high school GPA,

16Formally, we assume that εIi (h) ⊥ εIi (h′) for all history paths (h, h′) with h 6= h′, εIi (h) ⊥ εYi (h; j) for all
(h, j) ∈ H× {0, 1}, and εYi (h; j) ⊥ εYi (h′; j′) for all distinctive paths (h; j) and (h′; j′).

17Abbring and van den Berg (2003) propose a related treatment effects framework and provide identification
results. Our application differs substantially from their framework, as they consider a continuous time model where
outcome variables are durations and treatment effects under one possible treatment. We consider participation
decisions across multiple periods. See also Abbring and Heckman (2007).

18This strategy has been applied in various papers on human capital investment decisions. Carneiro et al. (2003),
Hansen et al. (2004), Heckman et al. (2006), Agostinelli and Wiswall (2016a), Agostinelli and Wiswall (2016b) and
Attanasio et al. (2020) are just a few examples.
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all observed before the individual enters the labor market. For each of them, we write:

Tik = XT
ikβ

T
k + θi1λ

T
k + εTik, (9)

where XT
ik is a vector of exogenous control variables, θi1 captures latent ability and εTik is assumed

to be independent across test scores k ∈ K and of all other error terms in the model.19

Given our interest in analyzing the returns to job training for employed workers, we consider
an additional dimension of unobserved heterogeneity: worker’s latent labor market productivity.
In order to avoid any reverse causality from training to productivity, which would jeopardize its
identification, we rely on information about workers’ labor market outcomes prior to any training
choices.20 In particular, we take advantage of information on workers’ monthly earnings, Wil with
l = {1, ...,L}, during that period, which we model as:

Wil = XW
il β

W
l + θi1λ

W
l1 + θi2λ

W
l2 + εWil , (10)

where XW
il includes control variables, θ2 captures latent labor market productivity and εWil is

assumed to be independent of all other error terms in the model. Latent ability is also allowed to
determine earnings.

Equations (9) and (10) conform a triangular measurement system. Within this framework,
Carneiro et al. (2003) and Hansen et al. (2004) show that non-parametrically identifying the dis-
tributions of the latent ability factor (fθ1(·)) and error terms (fεTik

(·)) along with the slopes (λTk ),

requires at least three test score measures ( K ≥ 3). On the other hand, the non-parametric identifi-
cation of the distributions fθ2(·) and fεWil

(·) along with the slopes of the earnings equations requires
L ≥ 2. Since both requirements are met in our context, we can identify the slopes and the distri-
butions of the latent factors and error terms (up to two normalizations). The formal identification
argument is presented in Appendix B.21 Since the distribution of θ is identified non-parametrically,
we can impose a flexible parametrization for its estimation. We return to this issue below.

4.3 Exclusion Restrictions

Exclusion restrictions (instruments) represent the second building block for securing the identifi-
cation of the treatment parameters of interest. In the literature, these are typically deployed to
address endogeneity concerns. In our case, however, latent factors account for the potential corre-
lation between unobservables across the choice and outcome equations. Alternatively, instruments
can be used to relax parametric assumptions commonly imposed in switching regression models.22

Despite the fact our setting fits into this class, data limitations and the complexity of the model
tilt the scale in favor of our linear-in-the-parameters specification.

19Notice that covariates are independent of θ1. This assumption underlines our interpretation of θ1. For instance,
if we control for mother’s education in the test scores equations, then θ1 would capture the unobserved ability
orthogonal to that variable. Urzua (2008) and Attanasio et al. (2020) relax this structure.

20While the literature on latent factors has traditionally relied on test score measures to identify unobserved ability,
it largely focuses on human capital investment in the context of schooling choices. Our context is different, as we
examine post-schooling training choices. We thus extend the literature by identifying baseline (or pre-training) latent
labor market productivity using initial wages. We thank two anonymous referees for this suggestion.

21Ashworth et al. (2017) present a similar argument in the context of identifying the returns to schooling.
22Consider, for instance, a more general version of the index function shaping training decisions (equation (5)):

Ii(ht) = βI(XI
i ) + ηIi (ht) with ht ∈ Ht and t ∈ T , where βI(·) is an unknown function. Following the arguments

in Matzkin (1994), assumptions on the instruments (existence and support) pave the way to the non-parametric
identification of both βI(·) and the distribution of the error term ηIi (ht). See Heckman and Navarro (2007) for a
detailed discussion.
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Instead, in this paper we exploit a more modest but not less important characteristic of exclu-
sion restrictions. On conceptual grounds, instruments encompass observed characteristics which
affect how individuals dynamically sort across training status. Consequently, since individual’s
responses to counterfactual scenarios can depend on observed and unobserved characteristics, we
must articulate the specification of decision rules.

Consider, for instance, the identification of treatment effects associated with changes in the
training choice model in period t. Contemporaneous and future compliers may possess different
observed and unobserved characteristics relative to the average individual, so the resulting outcomes
might not be identified by sample averages. In fact, this explains why reduced form models cannot
identify local/marginal treatment effects without further structure (Heckman and Urzua, 2010).
Thus, we shall articulate the specification of decision rules across potential histories and time
periods, including any variable that might affect Ii(ht) but not the outcomes. This, along with the
parameters and distributions already identified, enables the identification of counterfactuals that
depend on past or present training decisions which, in turn, can be influenced by exogenous shocks
(Mogstad and Torgovitsky, 2018). This secures the identification of the treatment parameters of
interest (Heckman and Vytlacil, 2001).

We use the average training hours at the firm and all firms within a certain geographical location
(“comuna”) where the individual is currently working as node-specific instruments. An implicit
assumption behind these exclusion restrictions is that an individual does not alter her behavior—in
a way that could affect her earnings—due to working in a firm that is more or less likely to invest in
training.23 We argue that the exclusion restriction may hold in our setting due to various reasons.
First, since among FT-participants in 2002-2010, the average worker took up fewer than 20 hours
of FT-subsidized training, these courses are unlikely to represent a major consideration for firm-
switching decisions among workers. This argument is reinforced by the fact that average training
hours at the firm/comuna are not publicly available information. The exclusion restriction may also
be violated if firms with unobserved characteristics which lead them to both invest in off-the-job
training tend to hire more productive workers. While we cannot directly test for this hypothesis,
the results in our Appendix C shows that we do not find evidence of a large correlation between our
(residualized) instruments and baseline variables not used in estimation (Figure C.1). Moreover,
to determine their empirical importance, we estimate the model without exclusion restrictions. We
present the results in Table C.1. Since the estimated returns to first-period training differ vis-a-vis
those in our preferred specification, we note that exclusions are indeed quantitatively important as
determinant of sorting across decisions and, consequently, of treatment effects.

4.4 Estimation

For estimation purposes, we define the sample likelihood as follows. Let Ψ be the vector that
collects the set of parameters. Given our independence assumptions, the likelihood for a set of I
individuals is given by:

L(Ψ | ·) =
∏
i∈I

[∫
θ

∏
k∈K

fT (Tik | XT
ik,θ)

∏
l∈L

fW (Wil | XW
il ,θ)

∏
t∈T

ϕ(Yi | XY
i , X

I
i , ht,θ)dF (θ)

]
,

where fTk(·) is the conditional density function of test score k, fWl
(·) is the conditional density

function of initial wage l, F (θ) represents the cumulative distribution function of the latent factors,

23Related to this issue, Ba et al. (2017) discuss how identification of the effects of training programs in an
experimental setting breaks down when individuals anticipate having a subsidized training in future periods and so
they change behavior today (for example, by lowering their present employment search intensity).
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and

ϕ(Yi | XY
i , X

I
i , ht,θ) =

[
f(Yi(ht; 1) | XY

i ,θ) Pr(Ii(ht) ≥ 0 | XI
i ,θ)

]Di(ht)

×
[
f(Yi(ht; 0) | XY

i ,θ) Pr(Ii(ht) < 0 | XI
i ,θ)

]1−Di(ht)
,

with fY (·) representing the conditional density function of Yi. We use normal distributions for
the idiosyncratic shocks in the choice process (equation 5), earnings regression (equation 6), and
measurement system (equation 9).24 However, for estimation purposes, we do adopt a flexible
functional form for each component (n ∈ {1, 2}) of θ:

θn ∼ ρ1,nN(τ1,n, σ
2
1,n) + ρ2,nN(τ2,n, σ

2
2,n),

that is, a mixture of two normal distributions with means (τ1,n, τ2,n), probabilities (ρ1,n, ρ2,n) with
ρ1,n + ρ2,n = 1 and variances (σ2

1,n, σ
2
2,n). We estimate the model by Markov Chain Monte Carlo

(MCMC) and thus inference follows standard Bayesian arguments.25 We present our estimated
parameters generating 500 draws from the estimated posterior and report the resulting average.
Using the Bernstein-von Mises theorem, we obtain the associated standard errors exploiting the
standard deviations computed from these draws. A similar procedure is used to compute functions
of the structural parameters (for example, ATE, TT, Dynamic ATEs, etc) and the associated
standard errors.

Table 4: Variables Used in Implementation of the Model

Variables Earnings Equation Training Probit Test Score Eq. Initial Wages

Constant Yes Yes Yes Yes

Gender Yes Yes Yes Yes

Age at Test Yes

Age at Entry Yes

HH Size Yes

Parents’ Education Yes

Parents’ Employment Yes

Age in Year t Yes Yes

Latent Ability Yes Yes Yes Yes

Latent Productivity Yes Yes Yes

Average Training Hours at Firm Yes

Average Comuna Hours Yes

Notes: Table 4 shows the variables used in our empirical model. In the measurement system, we use math and language college
entrance test scores, high school GPA and the initial salary and include as the observed measures. Training decisions include
gender and age as control variables as well as training-course availability across training decision nodes.

24Even though we assume normal disturbances, note that our identification argument does not rely on normality
and we only assume it for computational convenience. We have alternatively estimated a version of the model in
which the error terms in the test score equations follow a mixture of normal distribution. The estimated results are
in line with those presented in the main text and available upon request. We additionally assume that θ1 ⊥ θ2, yet
remark this assumption can be relaxed as in Heckman et al. (2018).

25We estimate the model using a Gibbs sampler as the MCMC algorithm. This delivers a sequence of realizations
that can be used to characterize the distributions of the parameters governing the model. Formally, if L(Y | Ψ)
denote the likelihood of the function for a given set of parameters Ψ, then the posterior distribution, g(Ψ | Y ), is
such that g(Ψ | Y ) ∝ L(Y | Ψ)g(Ψ), where ∝ stands for “proportional to”. We use the Gibbs sampling as a way
of obtaining the posterior distribution of the parameters. As it is standard, at each iteration of the algorithm we
form a conditional distribution of a set of parameters, ψj , given by g(ψj | ψ−j , Y ), where ψ−j is the sub-vector of all
structural parameters besides the sub-set ψj . The sample mean obtained from repeated draws of g(ψj | ψ−j , Y ) is
then used for updating the conditional distribution of g(ψk | ψ−k, Y ). We repeat this process to update all parameters,
across iterations until convergence. Appendix D describes the algorithm in detail.
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Table 4 shows the variables we include in the measurement system, training probit and earnings
equation. We consider two PSU test scores (math and language) along with students’ high school
GPA, which we allow to depend on the age at the time of PSU, along with family background
information. The initial wage measures depend on the age at labor market entry and gender as
well as the two latent factors. In the choice equations, we use age and, as noted above, we include
the average training hours at the firm and all firms within a certain geographical location (comuna)
where the individual is currently working. Lastly, in the earnings equation, we include a gender
dummy, age, and a constant.

Estimation Results. In Appendix E, we show the estimated parameters of our econometric model.
In Table E.2, we present the estimated parameters of the test score measures. The latent ability
factor loads positively on both test score measures and high school GPA. Meanwhile, both factors
load positively on the initial wage measures, yet the coefficient is larger on the latent productivity
factor. To understand the relative contribution of observed characteristics and latent ability vector
to test score measures, we present a variance decomposition in Figure 2. Latent ability explains
71%, 51% and 22% of the variance in the math PSU and verbal PSU scores and high school GPA,
respectively. Meanwhile, latent productivity explains 50-56% of the variance in the initial wages,
while the ability factor explains just 2-3% of the corresponding variance. In Figure 3, we depict the
distribution of unobserved heterogeneity. The latent ability component (θ1) deviates significantly
from normality, whereas θ2 does not. We thus remark the importance of allowing for flexibility in
the estimation of the θ distribution.

Figure 2: Measurement System: Variance Decomposition

0 .2 .4 .6 .8 1

Math Test

Language Test

High School GPA

 Initial Wage (II)

 Initial Wage (I)

Observables Productivity Factor
Ability Factor Error

Note: In Figure 2, we show the contribution of each variable to the variance of observed measures using the simulated
sample from our model. The “Observables” row indicates the share of the variance of the measure explained by the observed
variables: age at the time of test score, gender, parental employment dummy variables, mother’s and father’s education, as well
as household size. The “Ability Factor” component shows the proportion of the test score variance explained by unobserved
ability. Finally, the “Error term” represents the share of the variance in each observed measure explained by the unobserved
idiosyncratic error of the measurement equation.

Tables E.3 and E.4 present the estimated parameters of the training and earnings equations.
Across all choice nodes, women are more likely to participate in training and individuals with higher
latent ability and productivity are more likely to participate in job training. Moreover, workers
in firms with a large share of workers participating in FT courses as well as those in geographic
areas with more training course availability are more likely to have participated in training in any
period.26 The earnings equations indicate that males outearn women by upwards of 0.07 log points.

26The only statistically insignificant coefficient corresponds to the one on local-level course availability in the
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No discernible pattern arises with respect to the age-earnings profile. Both components positively
impact earnings, and this relationship holds across all training nodes.

Figure 3: Distribution of Latent Factors
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Note: In Figure 3, we show the estimated density of the latent factors. We obtain this density using the simulated sample
from our estimated model. We approximate the distribution of the individual’s unobserved ability factor by a mixture of
normal distributions. The first panel presents the density of the latent ability factor (θ1), whereas the second panel shows the
corresponding density for the latent productivity factor (θ2).

Lastly, we assess the model’s accuracy in predicting observed outcomes and choices. Figure E.1
compares observed and simulated training histories. The model matches training decisions well,
both in the first and second year. Table E.1, on the other hand, contrasts and formally tests for
the equality of data versus model-simulated first moments from the (log) earnings distributions.
Panels A and B display the results for t = 1 and t = 2, respectively. Our empirical strategy
precisely reproduces the overall (unconditional) moments in both periods, so we cannot reject
the null hypotheses of equality between actual and model (last column).27 Conditional on training
choices, the model also provides a good approximation of the first moments – the objects of interest
for this paper – although, in general, formal tests indicate statistical differences between them. In
fact, the model predicts earnings within only 0.05 log points of the observed means across all nodes
but h2 = {1} and j = 1. The difficulties of matching this moment are expected as only 10% of the
sample reach this node. The model, we conclude, mimics the key features of the data.

4.5 Selection on Unobserved Characteristics

Figure 4 compares the density of the latent factors for workers choosing different training paths.
Training choices are denoted by (h2; j), where h2 represents the training history prior to t = 2 (or the
first period decision) and j captures the training choice at t = 2. We find significant differences in
latent ability distribution across one-time participants, depending on the timing of the decision. We
find that for those who choose training in the first period but not in the second, the distribution
of both θ1 and θ2 almost entirely overlaps with the density of the never-trained group. On the
other hand, the distribution of the latent factor for those only trained in the second period clearly
surpasses the never-trained group. In both the ability and productivity components, the latent skills
of the always-trained group (1, 1) surpass the never-trained group by 0.2-0.3 standard deviations,
fitting in with the test score differences shown in baseline test scores in Table 2. Overall, we find

training equation of period t = 2, conditional on training in the first period.
27Following the conventional switching regression model, we define the overall (unconditional) moment as Yt =

Y (ht, 1)×D(ht) + Y (ht, 0)× (1−D(ht)).
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evidence of sorting on unobservables, as higher-skilled workers are more likely to have participated
in job training.

Figure 4: Distribution of Latent Factors by Training History
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Note: Figure 4 shows the estimated density of the latent factors for different training paths for workers in their first two years
in the labor force. A training history is defined by h3 = (h;h′), where h and h′ denotes training choices (h, h′ ∈ {0, 1}) for
periods 1 and 2, respectively. The first panel presents the density of the latent ability factor (θ1), whereas the second panel
shows the corresponding density for the latent productivity factor (θ2).

5 Returns to Job Training

This section presents evidence on the impact of job training on earnings. We define and estimate
static and dynamic treatment effects. We examine the mechanisms driving the dynamic effects of
training, by estimating dynamic complementarity (substitutability) in the context of job training
participation as well as continuation values. We also examine heterogeneous impacts across the
distribution of unobserved heterogeneity.

5.1 Static Treatment Effects

We first present evidence on static treatment effects, which capture the effects of training conditional
on reaching a particular choice node. Given that we examine earnings in the quarter following the
training event, this parameter recovers the short-term effects of training. Let E[.] denote the
expected value taken with respect to the distribution of (X, θ, ε), where ε is the collection of
idiosyncratic shocks determining outcomes and choices ε ≡ (εIj , ε

Y
s ). We first present evidence on

the average treatment effect in period t, ATEt, defined as the average impact of period t training
on period t earnings, conditional on a training history ht. Formally,28

ATE(ht) ≡ E[Yi(ht; 1)− Yi(ht; 0)]. (11)

28Formally, the exact definition is as follows:

ATE(ht) ≡
∫
· · ·

∫
(Yi(ht; 1)− Yi(ht; 0)) dF (X, θ, ε),

where F (X, θ, ε) is the cumulative joint distribution of observables and unobservables. Under the independence
assumption of our setting, f(X, θ, ε) = f(X)f(θ)F (ε).
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We can additionally defined the average effect of training in period t conditional on having partic-
ipated in t given ht. That is, the treatment on the treated, TT (ht), parameter is defined as:

TT (ht) ≡ E[Yi(ht; 1)− Yi(ht; 0) | Di(ht) = 1]. (12)

We present the estimated static returns to job training in Table 5. The average short-term
returns to first-period training (ATE(h1)) equal 2.5%, which are largely similar to the corresponding
treatment on the treated parameter for individuals who in fact took up first-year training. The
estimated returns are far lower than those found in the OLS regression presented in Table 3.29,30

For second-period training, conditional on not training in the first year (h2 = {0}), we find larger
static returns, reaching 4.0%. This effect significantly exceeds that for second-year participation
for workers who had been trained in the first period (h2 = {1}), which equals 0.8%. Across both
second-period returns, we find that the treatment on the treated parameters are in the same order
of magnitude with the average treatment effect parameters. Lastly, we note that while the ATE and
TT parameters are positive on average, first-period training lowers earnings for 43.5% of treated
workers.31 Since our econometric model is agnostic about the role of expectations in the decision-
making process, we cannot directly distinguish whether the negative returns could be explained
through financial regret—individuals do not correctly predict the monetary gains following from
training—or through psychic costs—the agent is willing to accept a negative monetary return
because training yields non pecuniary benefits. However, negative returns to training could arise
from the comparison of two regimes. One in which training leads to the accumulation of human
capital irrelevant to the firm, and one in which labor market experience (no training) leads to firm-
specific human capital. The comparison of outcomes across these states could result in negative
returns to training.

Table 5: Static Returns to Job Training (in %)

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 2.54 3.99 0.78
[2.50,2.58] [3.91,4.08] [0.62,0.94]

TT (percentage points) 2.58 4.07 0.81
[2.50,2.66] [3.84,4.30] [0.69,0.93]

Pr(ATE < 0)× 100 43.65 45.15 49.02
[43.54,43.77] [45.03,45.28] [48.77,49.27]

Pr(TT < 0)× 100 43.57 45.07 49.03
[43.32,43.81] [44.78,45.37] [48.65,49.41]

Notes: Table 5 presents the estimated Average Treatment Effects (ATE) and Treatment on the Treated (TT) parameters along
with the share of workers who experience negative returns to training across training histories and over time. The first column
shows the returns to first-period training (t = 1). The second and third columns present the estimated returns to second-period
job training, conditional on not participating in first-period training (Column 2) and conditional on first-period participation
(Column 3). We show 95% confidence intervals in brackets.

29Appendix F documents that selection bias on unobservable characteristics plays a critical role in explaining the
differences between reduced form estimates and the treatment effects recovered using estimated model parameters.

30Appendix G presents evidence from an alternative specification which includes a full set of observables in the
wage equations, showing similar static and dynamic returns to training.

31Table G.3 calculates the share of workers with negative returns without considering variation from the idiosyn-
cratic wage shocks. This alternative interpretation indicates that 15% of workers earn negative returns from training.

20



The estimated short-run effects of training (ATEs and TT s) are similar to the fixed-effects
estimates, presented in Table 3. However, these parameters do not necessarily coincide with the
parameters identified by fixed-effects regressions. The coefficient associated with job training in
the fixed-effects model is a weighted average—with potentially negative weights— across the three
treatment effect parameters (Callaway and Sant’Anna, 2020; De Chaisemartin and d’Haultfoeuille,
2020; Goodman-Bacon, 2018).

Figure 5: Heterogeneous Returns to First-Period Training Participation
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(a) Average Treatment Effect (θ2)
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(b) Average Treatment Effect (θ1)

Note: In Figure 5, we estimate local polynomial regressions of the estimated ATE parameter for the first training event (at
t = 1) against the distribution of latent ability (θ1) and latent productivity (θ2).

Figures 5 and 6 examine heterogeneous effects of training across the two latent factors.32 In
the first year of training (Figure 5), we find largely flat returns to training for workers across the
latent productivity distribution (θ2), yet find sizable heterogeneity in the latent ability component,
as less-skilled individuals experience far larger returns vis-a-vis their high-skilled counterparts. The
returns to second year training (Figure 6) show that among workers who had not been initially
trained (h2 = {0}), program participation has larger effects on earnings for high latent productivity
workers, exceeding 5% for those in the top decile of the skill distribution, while remaining close to 3%
for individuals in the bottom decile. On the other hand, we do not find significant heterogeneity
in the latent ability distribution. Lastly, for first-period participants (h2 = {1}), the impact of
second-period training for workers above the median of the latent productivity distribution (θ2) is
not different from zero, while exceeding 2% for those in the top of the latent ability distribution.
The difference in heterogeneous returns across the two latent factors remarks the importance of
considering multiple dimensions of unobserved heterogeneity when analyzing the returns to job
training participation.

32To compute these figures, we simulate outcomes and choices drawing different values from the distribution of θ.
For each simulation we compute the individual-level treatment effect and then estimate a non-linear regression of the
estimated treatment effects onto the latent skill distribution as a way to summarize this relationship.
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Figure 6: Heterogeneous Returns to Second-Period Training Participation
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(a) ATE (h2 = 0) v. θ2
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(b) ATE (h2 = 0) v. θ1
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(c) ATE (h2 = 1) v. θ2
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(d) ATE (h2 = 1) v. θ1

Note: In Figure 6, we estimate local polynomial regressions of the estimated average treatment effect of second-period job
training participation of against the distribution of latent ability (θ1) and latent productivity (θ2), conditional on first-period
choices (h2 = j where j ∈ {0, 1}). The top left panel shows, for instance, the average treatment effect of second-period
participation for workers who had not taken up training in the first year against the latent productivity distribution (θ2).

The estimated static treatment effects reveal heterogeneous impacts across different decision
margins, job training histories, and latent factors. As such, the constant effect framework required
in fixed-effect estimators is rejected in favor of a model of differential returns from job training.33

5.2 Dynamic Treatment Effects

While we have so far analyzed short-term treatment effects, job training may also affect medium-
and long-term labor market outcomes. In this sub-section, we extend our analysis by estimating the
dynamic returns to training, continuation values and dynamic complementarity/substitutability. As
such, we adapt the framework introduced in Section 2 to the two period setting. Thus,

Ỹi(h1; j) ≡ Yi(h1; j) + ρ (Di(h2)Yi(h2; 1) + (1−Di(h2))Yi(h2; 0)) , j ∈ H2 ≡ {0, 1}

where Di(h2) denotes second-period participation and Yi(h2; j) captures earnings for training choice
j, given history h2. The long-term direct effect introduced in equation (2) represents the direct

33In Appendix H, we further examine the intensive-margin returns to job training. Table H.1 presents reduced
form evidence showing larger returns to courses lasting longer than 20 hours. To recover the returns to longer courses
within our model, we restrict the sample to workers who either participated in courses lasting longer than 20 hours or
did not take-up training at all. Tables H.2 and H.3 show larger static and dynamic returns to participation in longer
training courses vis-‘a-vis those presented in the main model, respectively. As such, future work should account for
the effects in the intensity of training courses.
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effect of training on earnings two years after the event. Meanwhile, the continuation value of
training recovers the additional gain (if any) of training in the second-period from training in first
period for those who take up training in t = 2.

Table 6: Dynamic Returns to First-Period Job Training (in %)

DATE DTT DTUT

Direct effect (short-term) 1.59 1.61 1.59
(0.01) (0.02) (0.01)
[36%] [37%] [36%]

Direct effect (medium-term) 2.82 2.80 2.83
(0.02) (0.05) (0.02)
[64%] [64%] [64%]

Continuation value 0.01 -0.04 0.02
(0.02) (0.04) (0.02)
[0%] [-1%] [0%]

Total 4.42 4.38 4.43
(0.02) (0.05) (0.03)

Notes: Table 6 presents the estimated Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated (DTT)
and Dynamic Treatment on the Untreated (DTUT) of first-period training on the present value of earnings. We present DATE,

DTT, and DTUT as percentage of mean baseline of the present value of earnings (E[Ỹi(0)]). We present standard errors in
parenthesis and the percentage contribution of each term in brackets.

In Table 6, we present estimates from the following dynamic treatment effect parameters:

DATE ≡ E
[
Ỹi(h1; 1)− Ỹi(h1; 0)

]
, (13)

DTT ≡ E
[
Ỹi(h1; 1)− Ỹi(h1; 0) | Di(h1) = 1

]
, (14)

DTUT ≡ E
[
Ỹi(h1; 1)− Ỹi(h1; 0) | Di(h1) = 0

]
, (15)

and decompose them into short- and medium-term direct effects and continuation values.34 The
dynamic average treatment effect (DATE) indicates that job training in the first period in the
labor force increases the present value of earnings by 4.4%. This result is driven largely by the
direct effect of job training, as first-period participation increases earnings (in present-value terms)
by 1.6 and 2.8% one and two years after training, respectively. However, early training increases
the returns to training in the second period—the continuation value—by 0.01%, though the effect
is not statistically significant. This result is consistent with the estimates of Table 5, which indicate
a lower return to second-period training, for those who were trained in the first period compared
to their non-trained counterparts. All in all, the direct effects explain the entirety of the estimated
DATE (100%). As with the static treatment effects, we find similar effects in the dynamic TT and
TUT parameters.35

34For this exercise, we assume a discount factor ρ = 1/(1.05). In addition, we present our results as % increase
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Figure 7: Heterogeneous Dynamic Returns to First-Period Training Participation
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(b) DATE (θ1)

Note: In Figure 7, we estimate Dynamic Average Treatment Effects (DATE) of training in t = 1 on the present value of earnings
across deciles of latent ability (θ1) and latent productivity (θ2) as defined in Section 5.

In Figure 7, we examine heterogeneous dynamic treatment effects across the two latent factors,
and decompose them into direct effects and the continuation value. The first panel examines
heterogeneity in the latent productivity component. Confirming the results shown in Figure 5,
the short-term direct effects of training are largely flat across the θ2 distribution. In contrast,
the medium-term direct effects are larger for more productive workers. Lastly, we find that the
continuation value of training is largely flat, leading to a DATE which does not differ significantly
across the latent productivity dimension. Nonetheless, we find significant heterogeneity across
workers’ latent abilities. Both the short- and medium-term direct effect components are decreasing
across the θ1 distribution, while the continuation value of training is largely flat. We find sizable
differences in the DATE of job training, as workers in the bottom latent ability decile experience
returns reaching close to 6%, yet the returns for their top θ1 decile peers barely exceed 2%.

We note that the estimated continuation value of job training stands in contrast with those
estimated in the context of formal schooling. For example, Heckman et al. (2016) find that the
bulk of the return to high school graduation (around 70%) and to college enrollment (25%) is
explained by the continuation value of schooling, reaching a larger share for more skilled students.36

On the other hand, we find negative continuation values from job training for high productivity
workers, yet the contribution of continuation values to the total return to first-period training is
small compared to that of the direct effect components.

Dynamic Complementarity (Substitutability). The relationship between continuation val-

from the average baseline present value of earnings.
35While the distribution of θ is identified non-parametrically, its distribution is estimated through a mixture of

two normals. In Appendix I, we examine the robustness to estimating the latent factors using a mixture of three
normal distributions. The results are robust, as the first period returns to training reach 2.8% and the dynamic ATE
equals 4.6%, largely fitting in with the estimated returns presented in this section.

36We further consider wage outcomes for workers two years after the last training event, allowing us to define

‘long-term’ earnings for worker i choosing training option j given her training history h2: ̂Yi(h2; j) = Yi,t+1(h2; j) +
ρ×Yi,t+2(h2; j). We re-estimate the model using the ‘long-term’ earnings measure as the earnings outcome following
the second training decision. We present the static and dynamic returns to job training in Tables H.4 and H.5,
respectively. We find larger returns to second-period participation along with larger dynamic returns to training.
As such, we find a small, yet positive continuation value of training (5%). The estimated continuation value is still
significantly lower from those found by Heckman et al. (2016), remarking the differences in the returns to human
capital accumulation during and post-schooling.
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ues and dynamic complementarity (substitutability) in the two-period model can be expressed as
follows:

E [Di(1)(Yi(1; 1)− Yi(1, 0))−Di(0)(Yi(0; 1)− Yi2(0; 0))]︸ ︷︷ ︸
Continuation Value

=

E (Yi(1; 1)− Yi(1; 0))− (Yi(0; 1)− Yi(0; 0))]︸ ︷︷ ︸
Dynamic Complementarity/Substitutability

+

E (Di(1)− 1)(Yi(1; 1)− Yi(1; 0))− (Di(0)− 1)(Yi(0; 1)− Yi(0; 0))]︸ ︷︷ ︸
Dynamic Sorting Gains

(16)

As a result, on average, the production function of job training exhibits dynamic complementarity
(substitutability) if the return from training in a second period is higher (lower) conditional on
first-period participation: E [Yi(1; 1)− Yi(1; 0)] > E [Yi(0; 1)− Yi(0; 0)].

In Figure 8, we present evidence from a local polynomial regression of dynamic complementarity
(substitutability) parameter onto the latent productivity distribution (equation (16)). First-period
job training lowers the return from subsequent participation, independent of second-period de-
cisions: on average, we find evidence of dynamic substitutability (-2.6%). On the other hand,
dynamic sorting gains are positive (2.6% on average) and increasing across the latent productiv-
ity distribution, exceeding 3.5% for those in the top decile, fitting in with the sorting patterns
documented in Section 4.5.37

We note that dynamic substitutability, in the context of job training, may arise for various
reasons. First, job training could comprise multiple courses covering topics in the same area, with
workers starting in a baseline course and subsequently taking part in more complex coursework.38

In this setting, dynamic substitutability may appear if the first course delivers critical information
for improving job performance, with subsequent courses delivering less value-added. As a result,
while early trainees would take the second course in their second year in the labor force, non-
trainees would participate in the initial course, which delivers larger returns—thus yielding dynamic
substitutability. This result may also appear in a context of course heterogeneity, with individuals
choosing the most important (or higher-return) courses early on in their labor market careers and
subsequently taking courses delivering lower returns.39 Workers could rationally follow such a
strategy as the returns to the high-payoff courses could be enjoyed over a longer time horizon.

37We note that the heterogeneity in the dynamic complementarity (substitutability) parameter is largely muted
across the latent ability distribution.

38For example, workers first need to learn to operate a computer before taking a course on a specific software.
39In this context, workers would first take courses directly related to their industry or occupation and subsequently

participate in foreign language courses, for example.
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Figure 8: Heterogeneous Dynamic Complementarity (Substitutability) and Dynamic Sorting
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(a) Dynamic Complementarity (Substitutability)
v. θ2
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(b) Dynamic Sorting Gains v. θ2

Note: In Figure 8, we show dynamic complementarity (substitutability) and dynamic sorting gains (as a percentage of mean
baseline of the present value of earnings) as a function of latent productivity (θ2).

Dynamic substitutability could also emerge if workers face the decision to either accumulate
human capital within the firm, or “outside” the firm, through job training courses. Since the
returns to training would then recover the gains from formal off-the-job training relative to on-
the-job training, dynamic substitutability would indicate increasing returns to within-firm learning
over time, rather than capturing the underlying technology of job training. In this context, the
returns to training should be higher for workers switching firms, as the human capital accumulated
in job training would transfer to the new employer, though this would not be the case for prior
within-firm learning. To test for this possibility, we replicate our empirical analysis for a subsample
of workers who do not switch firms in their first two years in the labor force (“stayers”) in Appendix
J.40 As we find similar static and dynamic returns to training in the stayer subsample (Tables J.1
and J.2), we argue that firm-switching behavior induced through job training participation does
not drive the estimated impacts of job training.

The results presented in this section indicate small and heterogeneous returns to job training
participation. We next examine whether these gains would be actionable upon for workers, by
considering policy relevant treatment effects.

6 Dynamic Policy-Relevant Treatment Effects

We have so far focused on estimating parameters such as the average treatment effect and the
treatment on the treated. However, these may not necessarily be relevant parameters for policy
purposes. For instance, workers induced to change their training choices through a particular policy
may have different observed and unobserved characteristics relative to the average worker, and
thus their estimated gains from training would not be captured by average population parameters
(Mogstad and Torgovitsky, 2018). In this section, we introduce a framework which allows us to
examine the returns to various policy alternatives, decompose the effects across response types, and
study dynamic responses to these policies.

40This sample consists of 22,247 of the original 37,089 workers—that is, 60% of our sample never switched firms
in the first two years of labor force participation. We do not directly model workers’ firm switching behavior, yet
remark that the characteristics and training choices of stayers are largely similar to those in the full sample.

26



6.1 Policy Intervention

We follow the literature which defines policy relevant treatment effects in terms of policy shocks that
do not affect marginal treatment effects (Heckman and Vytlacil, 2001; Carneiro et al., 2010; Mogstad
et al., 2018; Mogstad and Torgovitsky, 2018), by analyzing the effect of a policy that affects the net
cost of first-period training while leaving fixed the net cost of second-period training. Concretely,
we examine the effect of an increase in the number of average hours of FT courses available across
comunas in t = 1 only. In practice, our simulation may capture a temporary, unexpected shock
to the training industry that increases the number of available courses in the market through
a policy intervention.41 Even though the policy change only affects net costs of job training in
the first period directly, it alters second-period decisions by shifting workers’ progression through
the training tree depicted in Figure 1. Furthermore, the simulated policy change affects observed
outcomes exclusively through training choices, not by influencing counterfactual earnings.

To consider how such a policy would impact training choices, we introduce the following no-
tation. Let Da

i (ht) be the training choice in period t in a given state of the world a. We model
the policy change as a shift from a to a′, which may directly result in changed training deci-
sions in the first period. For instance, workers who are first-period compliers are characterized by
{Da′

i (h1) = 1, Da
i (h1) = 0}.42 The policy change may also affect second-period choices through

changes in first-period decisions, as first-period compliers have reached a different choice node.
Counterfactual outcomes are otherwise unaltered: Y a

i (ht; j) = Y a′
i (ht; j) = Yi(ht; j), j ∈ {0, 1}.43

Both the number of workers affected by the policy and the estimated earnings effects might
depend on the magnitude of the intervention, which calls into question the external validity of the
Local Average Treatment Effect (LATE) of a particular policy change. To this end, we incorporate
this consideration in our policy simulation by estimating the effect of a policy intervention of varying
sizes, simulating a 10 and 50 percent expansion in the number of FT-hours available in each comuna
in the first period.44

6.2 Counterfactual Choices and Outcomes

Observed earnings in both periods depend on training choices. Let Y a
i,t be observed earnings in

period t (after training decision was made) under a. Given our assumption about the nature of the
policy, in t = 1:

Y a
i,1 ≡ Da

i (h1)Yi(h1; 1) + (1−Da
i (h1))Yi(h1; 0). (17)

where, again, we note that the policy change only affects first-period earnings for workers changing
their initial training decision. A similar expression, but encompassing the sequence of decisions
defined by Da

i (h1) and Da
i (h2), can be obtained for Y a

i,2.

41This policy change could also take place through a subsidy for FT providers to develop additional courses for
first-year labor market participants. Our framework can be extended to the case of policies that shift the cost of
training across multiple time periods. Here, we study the simplest case to illustrate the benefits of our model in terms
of revealing dynamic policy responses.

42The simulated policy implies that a represents the current state of the world, whereas a′ captures increased
training availability in the first-period and baseline second-period course availability.

43In each policy state a, we keep fixed draws of all error terms and parameters from the baseline model. Thus,
differences in choices between a and a′ stem exclusively from changes in the net utility of training participation
through a shift in the local availability of course hours. The simulated policy affects the latent utility associated with
the first participation node. As such, whether the policy impacts’ workers participation decisions depends on the
coefficient associated with the instrument being shifted in the policy simulation.

44Since the baseline number of hours per worker in each comuna in the first year equals 0.55 hours, the 10%
increase equals an increase in 0.055 course hours, while the 50% increase results in an average increase of 0.275 hours.
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We are interested in the effects of the policy on the present value of earnings, so let Ỹ a
i ≡

Y a
i,1+ρY a

i,2, where ρ is the discount factor. The effect of a policy that shifts the net benefits of training

choices from a to a′ is given by E
[
Ỹ a′
i − Ỹ a

i

]
. Since the policy only affects this parameter through

changes in training choices rather than through a direct impact on earnings, we can decompose its
effect by identifying agents’ response types. The policy intervention may lead workers to change
their first-period participation decision (compliers and defiers) or to maintain their baseline choice
under policy state a (always-takers and never-takers). Given our implicit monotonicity assumption
in equation (5), an increase in first-period course availability will only affect outcomes through first-
period compliers—captured by Da

i (h1) = 0 and Da′
i (h1) = 1. However, this change could also affect

second-period choices, as workers who modified their first-period decision due to the policy change
may make different training choices depending on their training history. Therefore, the group of
first-period compliers can be further divided by second-period responses in four types: compliers-
always takers, compliers-compliers, compliers-never takers, and compliers-defiers.45,46 As the policy
change does not have an impact on counterfactual earnings, the effect for workers not changing their
training decision in either period will not be different from zero.47 All in all, the effect of the policy

change on the present value of earnings is given by ∆a,a′ = E
[
Ỹ a′
i − Ỹ a

i | Da′
i (h1) = 1, Da

i (h1) = 0
]
,

the dynamic policy relevant treatment parameter (DPRTE). If we let Ai denote the condition
(Da′

i (h1) = 1, Da
i (h1) = 0), this parameter can be decomposed as:

∆a,a′ = E[Ỹ a′
i − Ỹ a

i |Da′
i (1) = Da

i (0) = 1,Ai]︸ ︷︷ ︸
Compliers, Always-Takers (WCO,AT )

×Pr[Da′
i (1) = Da

i (0) = 1|Ai]︸ ︷︷ ︸
Probability of Always-Takers

+E[Ỹ a′
i − Ỹ a

i |Da′
i (1) = 1, Da

i (0) = 0,Ai]︸ ︷︷ ︸
Compliers, Compliers (WCO,CO)

×Pr[Da′
i (1) = 1, Da

i (0) = 0|Ai]︸ ︷︷ ︸
Probability of Compliers

+E[Ỹ a′
i − Ỹ a

i |Da′
i (1) = 0, Da

i (0) = 0,Ai]︸ ︷︷ ︸
Compliers, Never-Takers (WCO,NT )

×Pr[Da′
i (1) = 0, Da

i (0) = 0|Ai]︸ ︷︷ ︸
Probability of Never-Takers

+E[Ỹ a′
i − Ỹ a

i |Da′
i (1) = 0, Da

i (0) = 1,Ai]︸ ︷︷ ︸
Compliers, Defiers (WCO,DF )

×Pr[Da′
i (1) = 0, Da

i (0) = 1|Ai]︸ ︷︷ ︸
Probability of Defiers

(18)

In this set-up, we can therefore estimate the aggregate effect of the policy on the net present value
of earnings for affected workers and examine the impacts across dynamic response groups. For
example, the increase in FT-course availability induces compliers-compliers to move from never
taking up job training to participating in the two periods. The complier-defier group may arise
if a particular sub-set of workers induced to participate in the first period would take up training
in the second period had they not been early trainees. These groups might reveal policy-relevant

45We note than an alternative policy change affecting the utility of second-period training participation could also
impact the policy parameter of interest through workers who did not change their initial participation decision, but
who became second-period compliers. As such, estimating the effects of this policy intervention requires considering
the impacts on initial period always-takers and never-takers, who became second-period compliers. Of course, eval-
uating policies in a dynamic context contrasts policy-relevant analysis in an static world, where only contemporary
compliers are the relevant group (Heckman and Vytlacil, 2001; Mogstad and Torgovitsky, 2018).

46In a similar set-up, Heckman et al. (2016) decompose LATE into the effects of augmenting the availability of
colleges on earnings for different subgroups affected by the policy in a dynamic-discrete choice model. While their
analysis considers earnings impacts in one time period for groups who shift their previous choices, we instead analyze
how both choices and outcomes of different periods are affected by the policy.

47In the notation of Blanco et al. (2019), these are our “principal strata”, as we could compare outcomes within
groups with different treatment status to recover treatment effects. In contrast to the principal stratification literature,
we follow a point-identification approach that exploits exclusion restrictions and a factor structure.

28



behavior and we directly test for their presence in our empirical analysis. Note that the weights are
given by the prevalence of each response type as a share of all workers who change participation
decisions due to the policy.

6.3 Results

Table 7: Share of Compliers and Dynamic-Policy Treatment Effects (in %)

Panel A. Share of Compliers by Intervention Size and Dynamic Response Type Group Weights

Share Compliers

Policy: +10% Policy: +50%
(1) (2)

Compliers (CO) 0.28% 1.45%

Weights by Type

Compliers-Always Takers (CO,AT ) 0.099 0.105
Compliers-Compliers (CO,CO) 0.304 0.299
Compliers-Never Takers (CO,NT ) 0.495 0.485
Compliers-Defiers (CO,DF ) 0.103 0.111

Panel B. Dynamic Policy Relevant Treatment Effect by Response Type

Dynamic Policy Relevant Treatment Effects

Policy: +10% Policy: +50%
(1) (2)

Compliers 3.85% 4.12%
[2.96,4.74] [3.74,4.50]

Compliers-Always Takers (CO,AT ) 3.32% 2.93%
[0.63,6.00] [1.79,4.07]

Compliers-Compliers (CO,CO) 4.57% 4.67%
[2.99,6.15] [3.98,5.36]

Compliers-Never Takers (CO,NT ) 3.66% 4.27%
[2.35,4.96] [3.72,4.82]

Compliers-Defiers (CO,DF ) 3.18% 3.11%
[0.46,5.89] [2.00,4.22]

Notes: Table 7 shows policy-relevant treatment effects of two policy shocks: a temporary increase in FT-hours by 10 and 50%.
We present the effect of the policy on the present value of earnings conditional on being a Wj type of complier (as a percentage
of baseline earnings), a 95% confidence interval of these returns (in brackets), and the proportion of compliers (in % terms).

Formally, let Ỹ
aj

i ≡ Y aj

i1 + ρY
aj

i2 be the present value of earnings for a policy regime aj . Weights are as defined in Section 5.

The first panel of Table 7 presents the share of workers induced to change their training decisions
due to the policy change. We find that a 10% increase in course-hour availability would induce
0.3% of the workers in our sample to participate in job training at some point in their first two
years in the labor force. The share of “affected” workers expands linearly across program expansion
size, since a 50 percent increase in FT course-hours would induce 1.5% of young workers to change
their training decision.48 Moreover, we find that almost half of all policy compliers come from
the complier-never taker group, which captures workers who take up job training only in the first

48While the program expansion need not have linear effects on training take-up, the empirical evidence shows no
indication of non-linear responses by program expansion size.
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period in response to the policy. Meanwhile, the complier-complier group, who take-up training in
both time periods due to the policy change, accounts for 30% of all affected workers. The weights
assigned to dynamic response types are largely constant across the two interventions.

In the second panel of Table 7, we show the estimated effect of the policy simulation on the
present value of earnings. We find that a small increase in course availability would increase
the earnings of affected workers by 3.8%, reaching 4.1% for a 50 percent increase in course-hour
availability. While the impacts are captured by the DPRTE parameter, the effect sizes fit largely
in line with the dynamic average treatment effect (DATE) presented in Table 6.

We find that the simulated policy would have heterogeneous impacts across dynamic response
types. For instance, workers who are induced to take-up training in both periods (compliers-
compliers) enjoy an earnings increase in the 4.6% range. We find similar effects for workers who
are induced to participate in only one training course, reaching 3.6-4.2% for compliers-never-takers.
The complier-defier group, which captures workers who move up their training choice due to the
policy change, would face returns in the 3.1% range, which are largely similar to the returns for
the complier-always taker group.

In Figure 9, we explore whether differences in the density of the unobserved factors across
response type groups may account for the heterogeneous earnings impacts documented above. The
latent productivity density of compliers-always-takers dominates that of the other response types,
surpassing that of compliers-compliers by 0.11 standard deviations, on average. Moreover, there
are larger differences with the other response types, as the average latent productivity of compliers-
always takers exceeds that of compliers-never takers by 0.32 standard deviations. In the second
panel, we present similar patterns along the latent ability (θ1) margin, yet the differences are
smaller in magnitude, as compliers-always takers surpass compliers-never takers by just 0.11 σ in
this dimension.

Figure 9: Density of Latent Factors by Dynamic Response Types
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(a) Response Types by Latent Productivity (θ2)
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(b) Response Types by Latent Ability (θ1)

Note: Figure 9 shows the estimated density of latent productivity (θ2) and latent ability (θ1) across dynamic response types.
The simulated policy reflects a 50% expansion in program course-hours availability in both periods. The density of the latent
factor distribution across response types is similar across different program expansion levels.

In this context, we examine whether the 50 percent expansion in first-year course hours would
deliver heterogeneous returns by estimating a local polynomial regression of the dynamic policy
relevant treatment effect parameter against the distribution of θ2 (Figure 10).49 We find largely

49The optimal policy design depends on the cost function of course hour expansion. While it would be natural to
think that costs follows a convex pattern, in 2015 the Chilean government allowed e-learning courses to be included
as part of Franquicia Tributaria courses, suggesting that a larger program expansion need not have a larger per unit
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homogeneous effects across the ability distribution, in the range of 3.8%.50

Figure 10: Heterogeneous Dynamic Policy Relevant Treatment Effects
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Note: Figure 10 shows the estimated impact of a 50% expansion in course availability on the present-value of earnings across
levels of latent productivity (θ2), captured by the dynamic policy-relevant treatment effect parameter.

In sum, we have found that increased course availability would lead a non-negligible share of
workers to change their early-career training decisions, while positively affecting their medium-
term earnings. However, the heterogeneous impacts across dynamic response types suggest that
the positive impacts depend on the number and the timing of the courses that workers are induced
to take up. Since the static framework necessarily overlooks multi-period response types, these
results highlight the importance of considering dynamic effects of policy changes.

7 Conclusions

In this paper, we leverage a large government-subsidized program to present the first estimates
of repeated participation in job training for first-time labor market entrants. We document dy-
namic selection patterns along two dimensions of unobserved heterogeneity, remarking differences
in sorting-into-training on both the timing and prevalence of participation in the early career. We
find that the static returns to job training are positive and significant, though they vary across the
timing of the event, training histories and heterogeneously across the latent factor distribution. The
dynamic treatment effects indicate larger medium-term gains from early job training, and this effect
is fully explained through the direct effect of training. As such, the continuation value of training
is not different from zero, standing in contrast with the positive continuation value from schooling
(Heckman et al., 2016). We further document the differences between continuation values and dy-
namic complementarity (substitutability). We find dynamic substitutability of first-year training:
early investments decrease the economic returns to later investments. Dynamic substitutability
may be explained by the structure of the job training courses examined in this paper, or more gen-
erally by the structure of post-schooling human capital accumulation processes. While we cannot
formally test for potential mechanisms, we consider our results a first step towards understanding
the complex dynamic of the returns to training.

cost than a small expansion.
50Along the latent ability component, the DPRTE is higher for lower skilled workers, resembling the DATE

patterns presented in Figure 7.
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Moreover, while estimating a variety of treatment effects allows us to capture the various mar-
gins through which training affects labor market outcomes, these returns may not necessarily be
actionable upon for workers (Mogstad and Torgovitsky, 2018). We have therefore examined the es-
timated impacts of an expansion in course-hour availability for first-time labor market entrants. In
this context, we identify dynamic response types and estimated dynamic policy relevant treatment
effects, as early-career policy changes may affect workers’ subsequent training decisions. While the
increase in course availability would lead to a sizable increase in medium-term earnings, the effects
are heterogeneous across dynamic response types. As a result, we remark that any policymaker con-
sidering an expansion in training courses should take into account the potential impact on workers’
subsequent labor market trajectories, rather than focusing solely on short-term outcomes.
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Appendices

A FD Estimator and Treatment Effects

Here, we analyze if fixed-effects estimators recover the ATE of training choices. We show that, in
the context of our model, the fixed-effect estimator can solve the inconsistency problem of OLS by
controlling for unobserved heterogeneity. However, it fails to identify the average treatment effect.

We follow the structure of the model to define the average treatment effect parameter. The
impact of training for an individual i at period t for a given history h equals Yit(ht; 1)−Yit(ht; 0).51,52

Let Hit(ht) be an indicator variable that equals 1 if individual i in period t followed training history
h and 0 otherwise. The overall average of these individual treatment effects is defined as:

ATE ≡ E

∑
h∈Ht

Hit(ht) (Yit(ht; 1)− Yit(ht; 0))


= E

∑
h∈Ht

Hit(ht)
(
µY (ht; 1)− µY (ht; 0) + (λY (ht; 1)− λY (ht; 0))θi

) , (A.1)

where the expected value operator integrates with respect to i and t. Therefore, ATE is a weighted
average of individual treatment effects across periods and different potential training histories.

In a longitudinal data set-up, the analyst’s goal is to identify (A.1) using observed data (Yit, Dit),
where Dit and Yit represent the observed training indicator and outcome variable. As a starting
point, consider the following linear regression:

Yit = π0 + π1Dit + ξit for i = 1, ..., N and t = 1, ..., T (A.2)

where ξit is an error term. OLS identifies:

δOLS ≡ Cov(Yit, Dit)

V ar(Dit)
= E[Yit|Dit = 1]− E[Yit|Dit = 0]

If the data generating process follows the dynamic model introduced in Section 2, then potential
self-selection into training results in a correlation between ξit and Dit (Ashenfelter and Card, 1985).
To see how self-selection affects the reduced-form estimate, first, let us define the following:

µY (j) ≡
∑
h∈Ht

Hit(ht)µ
Y (ht, j), λY (j) ≡

∑
ht∈Ht

Hit(ht)λ
Y (ht, j), εYit (j) ≡

∑
ht∈Ht

Hit(ht)ε
Y
it (ht, j)

for j ∈ {0, 1}. Second, following the standard switching regression model, we can express observed
variables (Yit, Dit) as functions of underlying potential outcomes and choices. Observed variables

51We note that the notation in this section differs slightly from the main text, as we include the time period in
which earnings are observed, defined as Yit.

52For notational simplicity, let XY βY (ht; j) = µY (ht; j).
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are given by:

Dit ≡
∑
ht∈Ht

Hit(ht)Dit(ht), (A.3)

Yit ≡
∑
ht∈Ht

Hit [Dit(ht)Yit(ht; 1) + (1−Dit(ht))Yit(ht; 0)] . (A.4)

Using the above definitions of Dit and Yit, and summing over observed and unobserved parameters
across training histories, we have:

Yit = µY (0) +Dit(µ
Y (1)− µY (0)) + ξit (A.5)

where the unobserved part of the equation is:

ξit ≡ (λY (0)θi + εYit (0)) +Dit(ε
Y
it (1)− εYit (0)) + (λY (1)− λY (0))θi

Thus, the consistency of OLS depends on whether the individuals know their unobserved latent
ability endowment (θi) and act on it. In this case, net benefits of training (Iit(ht) in equation (1))
depend on the unobserved latent ability endowment and the OLS estimator of π1 (equation A.2)
is inconsistent.

Since the inconsistency is originated because the analyst does not observe θi—and, thus, it
cannot control for it—, one commonly-used approach is to assume that an individual fixed-effect
factor drives selection bias. Even though the analyst does not observe θi, she can take advantage
of the longitudinal nature of the data to eliminate this fixed effect. To see how, reorganize terms
in equation (A.5) in the following way:

Yit =

π0︷ ︸︸ ︷
µY (0) +Dit

π1︷ ︸︸ ︷
(µY (1)− µY (0)) +

ui︷ ︸︸ ︷
[(λY (1)− λY (0))θi + λY (0)θi] +vit (A.6)

where vit ≡ εYit (0)+Dit(ε
Y
it (1)−εYit (0)), and note that the equation above is the standard fixed-effect

regression. Here, the fixed effect ui is a function of the unobserved productivity θi.
One way of estimating (A.6) is by taking First Differences (FD). Since we observe (Yit, Dit) for

various periods, we could run OLS on:

∆Yit = π1∆Dit + ∆vit,

where the fixed effect has been eliminated and the resulting error term is independent of Dit.
53

Therefore, by controlling for ui, we can recover consistent estimates of π1.
Which treatment parameter is the FD estimator recovering? Next, we show that the FD

estimator identifies the average treatment effect (that is, π = ATE as defined in equation A.1) only
if the underlying model of counterfactual outcomes is independent of training histories—which
means ignoring the dynamics we laid out in the previous section.

Consider the following assumptions:

Assumption 1. In equation (6), µY (ht; 1)− µY (ht; 0) = π1 for all ht ∈ Ht and t ∈ T .

Assumption 2. In equation (6), λY (ht; 1)− λY (ht; 0) = 0 for all ht ∈ Ht and t ∈ T .

53When T = 2, the fixed-effect estimator is equivalent to the first-differences estimator. In this paper, we focus
on the first-differences estimator, but the results are equivalent in the fixed-effect framework.
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Assumptions 1 and 2 restrict the gains from training to be constant for all training histories.
Assumption 2 rules out any potential gains to treatment for individuals with different levels of
unobserved heterogeneity, thereby disregarding the possibility that individuals with higher levels
of unobserved ability may enjoy larger returns to training. As a result, these assumptions not
only impose strong restrictions within periods, but also across labor market and training histories;
Assumptions 1 and 2 imply that the returns to training are equivalent for workers trained at time t
with training histories h ∈ Ht and h′′ ∈ Ht as well as for workers trained at time t−1 with histories
h′ ∈ Ht−1. Furthermore, these assumptions imply absence of complementarities in the human
capital accumulation process—a particularly strong restriction in the context of skills development
in the labor market (Mincer, 1974).

Under these assumptions, we can show the following.

Proposition 1. Suppose outcomes are determined by equation (6) and Assumptions 1 and 2. Then
the FD estimator from equation (A.6) follows:

δFD = π1 = µY (ht; 1)− µY (ht; 0) for ht ∈ Ht, t ∈ T

Proof. Let h and h′ denote elements of Ht and Ht−1. We can express the FD estimator as

δFD = 1/2× E

∑
h∈Ht

Hit(h)Yit(h; 1)−
∑

h′∈Ht−1

Hit−1(h′)Yit−1(h′; 0)


− 1/2× E

∑
h∈Ht

Hit(h)Yit(h; 0)−
∑

h′∈Ht−1

Hit−1(h′)Yit−1(h′; 1)


Given our assumption about counterfactual outcomes (equation 6), the equation above reduces

to:

δFD = 1/2× E

∑
h∈Ht

Hit(h)(µY (h; 1) + λY (h; 1)θi)−
∑

h′∈Ht−1

Hit−1(h′)(µY (h′; 0) + λY (h′; 0)θi)


− 1/2× E

∑
h∈Ht

Hit(h)(µY (h; 0) + λY (h; 0)θi)−
∑

h′∈Ht−1

Hit−1(h′)(µY (h′; 1) + λY (h′; 1)θi)

 ,
and collecting terms, we have

δFD = 1/2× E

∑
h∈Ht

Hit(h)(µY (h; 1)− µY (h; 0)) +
∑
h∈Ht

Hit(h)(λY (h; 1)− λY (h; 0))θi


+ 1/2× E

 ∑
h′∈Ht−1

Hit−1(h′)(µY (h′; 1)− µY (h′; 0)) +
∑

h′∈Ht−1

Hit−1(h′)(λY (h′; 1)− λY (h′; 0))θi

 .
Reducing the expression above by applying the expected value operator cannot yield ATE,

because of two fundamental reasons. First, Ht(h) is, in general, not independent of θi, since agents
may sort into training at different periods based on their knowledge of θi. Second, even if Ht(h)
and θi were independent, the resulting weighted averages of treatment effects of t and t − 1 may
not necessarily have to be the same. Under assumptions 1 and 2, the second term in each square
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bracket collapses to 0 and the first term to a constant π1. We have then

δFD = 1/2× π1 + 1/2× π1 = π1

As a result, assumptions 1 and 2 imply that the ATE equals π1 across all training nodes and
training histories (see equation A.1).

Under Assumptions 1 and 2, Proposition 1 shows that the FD estimator recovers an aver-
age treatment effect which is constant in time and across histories. Hence, the FD recovers our
parameter of interest only under the assumption of constant returns to training.

Another potential set of parameters of interest—specially relevant in the context of a dynamic
setting—are treatment effects in a dynamic sense. Dynamic treatment effects can be of interest as
they allow capturing potential complementarities in the returns to training. For instance, we may
be interested in estimating the effect of training for a worker who has received training at time
t and t − 1 relative to a counter-factual history with no training in either period. Formally, this
parameter can be defined as:

E[Yit((h
′; 1); 1)− Yit((h′; 0); 0)], h′ ∈ Ht−1 (A.7)

Is the FD able to identify dynamic treatment effects as defined in equation (A.7)? One can
show the FD estimator equals E[∆Yit|∆Dit = 1]− 1/2× E[∆Yit|∆Dit = −1]. Then, since the FD
estimator requires using the sample of workers who have changed their participation decision in
periods t and t− 1, we cannot use the FD estimator to recover a dynamic treatment effect.

Table A.1 performs formal tests of Assumptions (1) and (2). Panel A presents the parameters
associated with assumption (1). Assumption (1) requires that µY (1)−µY (0) = µY (1, 1)−µY (1, 0) =
µY (0, 1)− µY (0, 0) = π1 for h ∈ Ht. In the implementation of the dynamic model, µY (j, ht) equals
XY
i β

Y (j, ht) for j ∈ {0, 1} and for all histories ht. Using a F test, we test the null hypothesis
that the three parameters are equal to each other. Our results indicate a strong rejection the null
hypothesis (p-value < 0.01). Panel B presents the parameters associated with Assumption (2).54

In our context, this assumption requires λ(1) − λ(0) = λ(1; 1) − λ(1; 0) = λ(0; 1) − λ(0; 0) = 0 for
h ∈ Ht. This assumption implies that higher ability workers cannot enjoy additional returns to
training across different time periods and training histories. We conduct the same F test and find
the three parameters are statistically different from each other (p-value < 0.01). Therefore, we find
evidence against the null hypothesis that fixed-effect estimators recover the ATE.

54We present the test for the latent ability factor θ1. Results are equivalent for θ2.
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Table A.1: Testing Assumptions 1 and 2 for Validity of FD Estimators

(a) Assumption 1: µY (ht; 1)− µY (ht; 0)

µY (1)− µY (0) µY (0, 1)− µY (0, 0) µY (1, 1)− µY (1, 0)

Coefficient 0.025 0.040 0.010

p-value of test 0.000

(b) Assumption 2: λY (ht; 1)− λY (ht; 0)

λY (1)− λY (0) λY (0, 1)− λY (0, 0) λY (1, 1)− λY (1, 0)

Coefficient -0.010 0.004 0.013

p-value of test 0.000

Notes: We test for assumptions 1 and 2 using a simulated sample drawn from the estimated dynamic model. We
show the p-value of the joint hypothesis of equality of parameters.
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B Identification Strategy

This section presents the identification of the measurement system presented in Section 4. The
identification of the distribution of the Latent Factors follows the formal arguments presented in
Carneiro et al. (2003), Hansen et al. (2004), Heckman et al. (2006). In the measurement system
presented in equations Section 4, the covariance between all test scores is observed and relied on
as part of the identification strategy. Throughout this section, we keep the conditioning on X
implicit. Let Tk denote observed test score measures (k = 1, 2, 3). Using the covariances between
these test scores, we can compute:

Cov(T1, T2) = λT1 λ
T
2 σ

2
θ,1

Cov(T2, T3) = λT2 λ
T
3 σ

2
θ,1

Cov(T1, T3) = λT1 λ
T
3 σ

2
θ,1

where σ2
θ,1 represents the variance of the latent ability factor. Normalizing the loading associated

with the PSU math test score (λT1 = 1), yields a system with three equations and three unknowns.
We can identify the remaining three unknown parameters λT2 , λT3 , and σ2

θ,1.
For the initial wage system, we identify the latent ability factor loadings leveraging the covari-

ance of test scores and wages as follows:

Cov(T1,W1) = λT1 λ
W
1 σ2

θ,1

Cov(T1,W2) = λT1 λ
W
2 σ2

θ,1

Since λT1 and σ2
θ,1 are already identified, the remaining loadings λW1 and λW2 are also identified from

each equation presented above.
To identify the variance of the latent productivity factor, we take advantage of the first two

initial wages along with the first training probit (equation (5)), as in Urzua (2008). The covariances
across these measures are given by:

Cov(W1,W2) = λW1 λW2 σ2
θ,1 + ηW1 ηW2 σ2

θ,2

Cov(W1, I) = λW1 λIσ2
θ,1 + ηW1 ηIσ2

θ,2

Cov(W2, I) = λW2 λIσ2
θ,1 + ηW2 ηIσ2

θ,2

where σ2
θ,2 represents the variance of the latent productivity factor. As the λWj components are

already identified, the system above includes three equations and four unknowns. By normalizing
the loading associated with the first initial wage (ηW1 = 1), the remaining loadings (ηW1 and ηI)
and the variance of the latent productivity factor (σ2

θ,2) are identified as well. Having secured
the identification of all the loadings and the variance of each latent component, we can apply the
following transformation to the test score measurement system:

Tk
λTk

= θ1 +
εek
λT1

(B.1)

We can then apply Kotlarski (1967)’s theorem to equation (B.1) to identify:

fθ1(.), fεTk (.) (B.2)

Applying the same argument to equation (10) allows us to identify fθ2(.), fεWj
(.)
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C Evaluating the role of Exclusion Restrictions

C.1 Instruments Diagnosis

Figure C.1: Instruments Diagnosis: Correlations between Instruments and Parents Education

Corr(gender, hours resid)

Corr(HH size, hours resid)

Corr(emp mother, hours resid)

Corr(emp father, hours resid)

Corr(educ mother, hours resid)

Corr(educ father, hours resid)

-.01 0 .01 .02 .03
Correlation coefficient

(a) Average hours at the firm level

Corr(gender, hours resid)

Corr(HH size, hours resid)

Corr(emp mother, hours resid)

Corr(emp father, hours resid)

Corr(educ mother, hours resid)

Corr(educ father, hours resid)

-.04 -.02 0 .02 .04 .06
Correlation coefficient

(b) Average hours at the comuna level

Note: This figure shows estimated correlation coefficients of our instrument with parents education and of these
variables with average wages. The left panel shows estimated correlations of hours at the firm while the right panel
at the comuna level.

C.2 Returns to Job Training: No Instrument Model

Table C.1: Static Returns to Training

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) -0.06 3.66 0.50
[-0.09,-0.02] [3.58,3.75] [0.35,0.66]

TT (percentage points) -0.09 3.87 0.59
[-0.16,-0.01] [3.64,4.11] [0.47,0.70]

Notes: We report estimates of the Average Treatment Effects (ATE), Treatment on the Treated (TT), and likelihood of
negative treatment effects across three training nodes. The first column show treatment effects after individuals make their first
choice (t = 1). The second and third columns show estimates for after individuals make a second choice (t = 2), conditional on
two possible choices in the first period (D1 ∈ {0, 1}). We show 95% confidence intervals in brackets.
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Table C.2: Dynamic Returns to Training

DATE DTT DTUT

Direct effect (short-term) 0.30 0.29 0.31
(0.01) (0.02) (0.01)
[16%] [16%] [16%]

Direct effect (medium-term) 1.60 1.65 1.59
(0.02) (0.04) (0.02)
[85%] [89%] [85%]

Continuation value -0.03 -0.09 -0.01
(0.02) (0.04) (0.02)
[-2%] [-5%] [-1%]

Total 1.88 1.86 1.88
(0.02) (0.05) (0.03)

Note: We estimate Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated (DTT) and Dynamic
Treatment on the Untreated (DTUT) of training in t = 1 on the present value of earnings.

Figure C.2: Goodness of Fit: Training Decisions
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Note: In Figure C.2, we compare the share of workers who followed each of the four possible training histories in
their first two years in the labor force. A training history is given by h3 = (h;h′), where the first and second entry
indicate training decisions in the first and second period, respectively.
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D The Gibbs Sampler Algorithm for a Roy Model

We describe the our MCMC algorithm. For sake of clarity, we do this in the context of a simplified
version of the Roy model: a two-sector static one-factor model. Its extension to the setting used
in the main text is direct. Let θ be the latent factor and onsider the following model:

I = Zγ + V,

Y1 = X0β1,0 +X1β1,1 + ε1,

Y0 = X0β0,0 +X1β0,1 + ε0.

D = 1[I > 0]

Assume a factor structure of the form:

V = θαV + UV

ε1 = θα1 + U1

ε0 = θα0 + U0

where U1 ⊥⊥ U0 ⊥⊥ UV , and θ ⊥⊥ (U0, U1, UV ), and

U1 ∼ N(0, σ2
U1

),

U0 ∼ N(0, σ2
U0

),

UV ∼ N(0, σ2
UV

).

As a measurement system, consider the test score equation:

T = Qκ+ θ + UT1

where UT1 ∼ N(0, σ2
UT1

).

Thus, the likelihood function can be written as:

f(Yj , Tj , Dj ; Θ) =

∫
f(Yj , Tj , Dj |θj)dF (θj)

=

∫
f(Yj , Dj |θj)f(Tj |θj)dF (θj).

Under our assumptions:

Γ(Y, T,D; Θ) =

N∏
j=1

∫ [
1√

2πσT
exp

(
− 1

2σ2
T

(Tj −Qjκ− θj)2

)]
[

1√
2πσu1

exp

(
− 1

2σ2
u1

(Y1,j −Xjβ1 − α1θj)
2

)
Φ (−Zjγ − αV θj)

]Di

[
1√

2πσu0
exp

(
− 1

2σ2
u0

(Y0,j −Xjβ0 − α0θj)
2

)
(1− Φ (−Zjγ − αV θj))

]1−Di

dF (θj).

The block structure associated with the likelihood function becomes:
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f(α, β, τ, γ, κ, θ/Y, T,D) ∝ f(Y, T,D|α, β, τ, γ, κ, θ)f(α, β, τ, γ, κ, θ)

∝ f(Y,D|α, β, τ, γ, κ, θ)f(T |α, β, τ, γ, κ, θ)f(α, β, τ, γ, κ, θ)

∝ f(Y |D,α, β, τ, γ, κ, θ)f(D|α, β, τ, γ, κ, θ)f(T |α, β, τ, γ, κ, θ)f(α, β, τ, γ, κ, θ)

∝ f(Y |D,α, β, τ, γ, κ, θ)f(D|α, β, τ, γ, κ, θ)f(T |α, β, τ, γ, κ, θ)f(α, β, τ, γ, κ, θ)

= τ
n(Di=1)/2

u1 exp

−τu1

∑
(Di=1)

(Y 1
i −Xiβ1 − α1θi)

2


×τn(Di=0)/2

u0 exp

−τu0

∑
(Di=0)

(Y 0
i −Xiβ0 − α0θi)

2


×

n∏
i=1

[Φ (−Ziγ − αvθi)]Di [(1− Φ (−Ziγ − αvθi))]1−Di

×τn/2ut exp
(
−τut(

∑
(Ti −Qiκ− αtθi)2

)
×τn/2f exp(−τf (

∑
θ2
i ) exp(−τu1) exp(−τuo) exp(−τut)

×
(

1

10

)1/2

exp

{
− 1

10
(α0)2

}(
1

10

)1/2

exp

{
− 1

10
(α1)2

}
(

1

10

)1/2

exp

{
− 1

10
(αV )2

}
,

where we explicitly impose a set of prior distributions. Using the block structure we can derive the
formulae for the conditional posteriors:

1. Outcome equations:

f(βi/αi, τi, θ, Y,D) ∝ exp

−τi
∑
j:D=i

(Yj −Xjβi − αiθj)2

 for i = 0, 1

so

βi/. ∼ N

∑j:D=i xj(yj − αiθj)∑
j:D=i xjx

′
j

,

τi ∑
j:D=i

xjx
′
j

−1 , (D.1)

f(αi/βi, τi, f, Yi) ∝ exp

−1

2
τi
∑
j:D=i

(yj − xjβi − αiθj)2 − 1

2

1

10
α2
i

 for i = 0, 1.

Let Ỹ = Y −Xβ, thus

exp

−1

2
τui

∑
j:D=i

(ỹj − αiθj)2 − 1

2

1

10
α2
i


Thus, we can demonstrate:

αi/βi, τi, θ, Y,D ∼ N(α̂i,Σi) (D.2)
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where Σi =
(
τi
∑

j:D=i θ
2
j + 1

10

)−1
and α̂i = Σi

(
τi
∑

j:D=i θj ỹj

)
.

2. Measurement system:

f(κ/τT , θ,Q, T ) ∝ exp

−τT N∑
j=1

(Tj −Qjκ− θj)2


then

κ/. ∼ N(
(
Q′Q

)−1
(Q′(T − θ)), τ−1

ut (Q′Q)−1) (D.3)

3. Decision model:
We need a completion for D. Let D∗ be the latent variable. Then,

f(γ, αV , D
∗/D) ∝ f(D/αV , γ,D

∗)f(D∗/αV , γ)f(γ)f(αV )

=

(
1

10

)1/2

exp

{
−1

2

1

10
(αV )2

} N∏
j=1

[
1(D∗j > 0)φ

(
D∗j − Zjγ − αV θj

)]Dj

[
1(D∗j < 0)φ

(
D∗j − Zjγ − αV fj

)]1−Dj

Now,

f(γ/αV , θ,D
∗, D) ∝

N∏
j=1

φ
(
D∗j − Zjγ − αV θj

)

= exp

1

2

N∑
j=1

(
D∗j − Zjγ − αV θj

)2
Consequently,

γ/. ∼ N(
(
Z ′Z

)−1
(Z ′ (D∗ − θαV )),

(
Z ′Z

)−1
) (D.4)

On the other hand,

f(αV /γ,D
∗, D) ∝ exp

{
− 1

10
(αV )2

} N∏
j=1

φ
(
D∗j − Zjγ − αV θj

)

= exp

1

2

N∑
j=1

(
D∗j − Zjγ − αV θj

)2 − 1

2

1

10
(αV )2


Using the same logic as in (D.2) we obtain:

αV /. ∼ N(α̂V ,ΣV ) (D.5)

where ΣV =
(
θ2 + 1

10

)−1
and α̂V = ΣV (θ (D∗ − Zγ)).

Finally,

f(D∗/αV , θ, γ,D) ∝
[
1(D∗j > 0)φ

(
D∗j − Zjγ − αV θj

)]Dj
[
1(D∗j < 0)φ

(
D∗j − Zjγ − αV θj

)]1−Dj
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Therefore, we sample D∗ from:

D∗j =

{
TN[0,∞) (Zjγ + αvθj , 1) if Dj = 1

TN(−∞,0] (Zjγ + αvθj , 1) if Dj = 0
(D.6)

4. Precisions:

τi/. ∼ G

∑j:D=i 1

2
+ 2,

1

2

∑
j:D=i

(yj − xjβi − αiθj)2

+ 1

 for i = 0, 1 (D.7)

τT /. ∼ G

N
2

+ 2,

1

2

N∑
j=1

(Tj −Qjκ− θj)2

+ 1

 (D.8)

τθ/. ∼ G

N
2

+ 2,
N∑
j=1

θ2
j + 1

 (D.9)

Lastly, the posterior for θ becomes:

θj/.,Dj = 1 ∝ τ
1/2
i exp

(
−τi

1

2
(Yj −Xjβi − αiθj)2

)
τ

1/2
T exp

(
−τut

1

2
(Tj −Qjκ− θj)2

)
exp

(
1

2

(
D∗j − Zjγ − αV θj

)2)
τ

1/2
f exp(−τfθ2

j )

∝ exp
(
τi(Yj −Xjβi − αiθj)2

)
exp

(
τT (Tj −Qjκ− θj)2

)
exp

((
D∗j − Zjγ − αV θj

)2)
exp(τfθ

2
j )

= exp
(
τi(θ

∗
j − αiθj)2 + τut(θ

∗∗
j − θj)2 +

(
θ∗∗∗j − αV θj

)2
+ τθθ

2
j

)
,

where θ∗j = Yj −Xjβi, θ
∗∗
j = Tj −Qjκ, θ∗∗∗j = D∗j − Zjγ. Notice that:

α2
i τi

(
1

αi
θ∗j − θj

)2

+ α2
t τT (θ∗∗j − θj)2 = (α2

i τui + α2
t τut)

(
fj −

αiτuiθ
∗
j + αtτutθ

∗∗
j

(α2
i τui + α2

t τut)

)2

+
(α2

i τui)(α
2
t τut)

(α2
i τui + α2

t τut)

(
1

αi
θ∗j −

1

αt
θ∗∗j

)2

,

and

α2
V

(
1

αV
θ∗∗∗j − θj

)2

+ τfθ
2
j = (α2

V + τf )

(
θj −

αV θ
∗∗∗
j

(α2
V + τf )

)2

−
α2
V τf

(α2
V + τf )

(
− 1

αV
θ∗∗∗j

)2

.
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Thus,

exp
(
τi(θ

∗
j − αiθj)2 + τT (θ∗∗j − θj)2 +

(
θ∗∗∗j − αV θj

)2
+ τfθ

2
j

)
∝

exp

(
(α2

i τi + τT )

(
θj −

αiτiθ
∗
j + τT θ

∗∗
j

(α2
i τi + τT )

)2

+(α2
V + τf )

(
θj −

αV θ
∗∗∗
j

(α2
V + τf )

)
.2
)

And since:

exp
(
τi(θ

∗
j − αiθj)2 + τT (θ∗∗j − θj)2 +

(
θ∗∗∗j − αV θj

)2
+ τfθ

2
j

)
∝

exp

−1

2

(
α2
i τi + τT + αV + τf

)(
θj −

αiτiθ
∗
j + τT θ

∗∗
j + αV θ

∗∗∗
j(

α2
i τi + τut + α2

V + τf
) )2

 ,

we obtain:

θj/.,Dj = i ∼ N

(
αiτuiθ

∗
j + αtτutθ

∗∗
j αvθ

∗∗∗
j(

α2
i τui + α2

t τut + α2
v + τθ

) , (α2
i τui + α2

t τut + α2
v + τθ

)−1

)
. (D.10)

The Gibbs sampling procedure becomes:

1. Choose initial values for the parameters, and an arbitrary first draw for the

factor. For example, θ(m) ∼ N(0, 1))

For m = 1,M

1. Sample D
∗(m)
j for j = 1, ...., N according to (D.6)

2. Sample θ
(m)
j for j = 1, ...., N according to (D.10)

3. Sample β
(m)
i (i = 1, 2) according to (D.1)

4. Sample α
(m)
i (i = 1, 2) according to (D.2)

5. Sample κ(m) according to (D.3)

6. Sample γ(m) according to (D.4)

7. Sample α
(m)
V according to (D.5)

8. Sample τ
(m)
i (i = 1, 2) according to (D.7)

9. Sample τ
(m)
T according to (D.8)

10. Sample τ
(m)
f according to (D.9)

Iterate over m until converge.
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E Estimated Model Parameters

E.1 Goodness of Fit

Figure E.1: Goodness of Fit: Training Decisions
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Note: In Figure E.1, we compare the share of workers who followed each of the four possible training histories in their first two
years in the labor force. A training history is given by h3 = (h;h′), where the first and second entry indicate training decisions
in the first and second period, respectively.

Table E.1: Goodness of Fit: Labor Market Outcomes by Training History

Moment Actual Model H0: Actual=Model
p-value

A. Period t = 1
Unconditional: E[Y1] 6.162 6.166 0.244

[6.161,6.171]
Conditional on training decision:

E[Y (h1; j)|j = 1] 6.304 6.245 0.000
[6.234,6.256]

E[Y (h1; j)|j = 0] 6.122 6.144 0.000
[6.138,6.150]

B. Period t = 2
Unconditional: E[Y2] 6.273 6.277 0.351

[6.271,6.282]
Conditional on training decision:

E[Y (h2; j)|h2 = {1}, j = 1] 6.550 6.441 0.000
[6.423,6.458]

E[Y (h2; j)|h2 = {1}, j = 0] 6.292 6.291 0.893
[6.275,6.306]

E[Y (h2; j)|h2 = {0}, j = 1] 6.405 6.374 0.004
[6.360,6.389]

E[Y (h2; j)|h2 = {0}, j = 0] 6.196 6.228 0.000
[6.221,6.235]

Notes: Table E.1 shows the means of log earnings by year and training choice from the observed data and the simulated sample.
Following the notation used in the text, Y (ht, j) represents (log) earnings in period t given training history ht and training
decision at that period j. Y a

t represents unconditional earnings reported at t. Thus, Yt = Y (ht, 1)×D(ht)+Y (ht, 0)×(1−D(ht)).
In brackets, we show a 95% confidence interval on the mean of simulated earnings by training decision. We present the p-value
from a t-test of the equality of means.
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E.2 Estimated Parameters

Table E.2: Measurement system estimates

Math PSU Language PSU HS GPA Salary (I) Salary (II)

Constant 2.204 1.774 3.945 -3.946 -2.954
(0.117) (0.122) (0.135) (0.062) (0.062)

Male 0.134 -0.083 -0.383 0.119 0.018
(0.009) (0.009) (0.010) (0.010) (0.010)

Age -0.156 -0.127 -0.208
(0.007) (0.007) (0.007)

Household Size -0.021 -0.037 0.004
(0.002) (0.003) (0.003)

Mother’s Education 0.038 0.044 0.004
(0.002) (0.002) (0.002)

Father’s Education 0.027 0.029 -0.003
(0.001) (0.001) (0.001)

Father’s Employment -0.097 -0.104 -0.066
(0.011) (0.012) (0.012)

Mother’s Employment -0.011 0.025 -0.110
(0.009) (0.010) (0.011)

Productivity Factor 0.000 0.000 0.000 1.000 0.719
(0.000) (0.000) (0.000) (0.000) (0.006)

Ability Factor 1.000 0.852 0.565 0.222 0.271
(0.000) (0.007) (0.007) (0.007) (0.007)

Precision 6.867 2.849 1.453 3.850 2.011
(0.227) (0.035) (0.012) (0.032) (0.016)

Age at Entry 0.167 0.137
(0.003) (0.003)

Sample Size 37,089

Note: The table displays the estimation results from the measurement system of test scores (equation 9). We
obtain these estimates by simulating 500 values of parameters using our estimated posterior. The ‘Sample Size’ row
denotes the number of individuals included in our data and used to estimate the model. The dependent variable are
the standardized test score and the initial log earnings at the time of labor market entry. The earnings equation
includes year-of-entry dummies. Standard errors are in parentheses. The loading on cognitive factor in the initial
earnings equation is normalized to 1.
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Table E.3: Structural Model: training probits

I I(0) I(1)

Constant -1.323 -1.546 -1.342
(0.094) (0.106) (0.174)

Gender -0.037 -0.037 -0.082
(0.015) (0.018) (0.030)

Firm average training hours 0.605 0.722 0.351
(0.010) (0.012) (0.017)

Comuna average training hours 0.164 0.104 -0.071
(0.085) (0.091) (0.164)

Comuna Wages 0.024 0.011 0.004
(0.007) (0.009) (0.015)

Productivity Factor 0.090 0.141 0.222
(0.012) (0.013) (0.020)

Ability Factor 0.030 0.029 0.087
(0.011) (0.012) (0.020)

Precision 1.000 1.000 1.000
(0.000) (0.000) (0.000)

Sample Size 37,089

Note: We show the estimated parameters of the training probits (equation 5). We obtain these estimates by simulating
500 values of parameters using our estimated posterior. The ‘Sample Size’ row denotes the number of individuals included in
our data and used to estimate the model. The dependent variable corresponds to the training dummy I(h), for lagged training
choice ht ∈ {0, 1}. Standard errors are in parentheses.
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Table E.4: Structural model: earnings equations

Y (0) Y (1) Y (0, 0) Y (0, 1) Y (1, 0) Y (1, 1)

Constant 4.788 3.632 4.668 3.868 3.452 3.656
(0.156) (0.312) (0.220) (0.376) (0.449) (0.513)

Gender 0.080 0.082 0.110 0.107 0.112 0.118
(0.005) (0.007) (0.006) (0.008) (0.009) (0.010)

Age 0.033 0.139 0.044 0.125 0.157 0.143
(0.014) (0.029) (0.020) (0.035) (0.042) (0.047)

Age Sq. 0.001 -0.001 0.001 -0.001 -0.001 -0.001
(0.000) (0.001) (0.000) (0.001) (0.001) (0.001)

Comuna Wages 0.007 0.005 0.013 0.012 0.016 0.013
(0.001) (0.002) (0.002) (0.003) (0.004) (0.004)

Productivity Factor 0.570 0.571 0.526 0.536 0.540 0.530
(0.003) (0.004) (0.003) (0.005) (0.006) (0.006)

Ability Factor 0.135 0.123 0.146 0.151 0.128 0.141
(0.004) (0.005) (0.004) (0.006) (0.006) (0.007)

Precision 84.410 74.202 17.786 19.583 18.196 20.582
(2.746) (3.361) (0.184) (0.445) (0.478) (0.578)

Sample Size 37,089

Note: We show the estimated parameters of the earnings process (equation 6). We obtain these estimates by simulating 500
values of parameters using our estimated posterior. The ‘Sample Size’ row denotes the number of individuals included in our
data and used to estimate the model. The dependent variable corresponds to average monthly earnings Y (ht; j), for training
choice j ∈ {0, 1} and lagged training choice ht ∈ {0, 1}. All earnings equations include year-of-entry dummies. Standard errors
are in parentheses.
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F Decomposing the Treatment Effects

Our model provides an opportunity to examine the extent to which selection-into-training accounts
for differences in reduced form estimates and structural parameters. For instance, we can recover
the importance of selection bias using the following decomposition:

E[Yi(ht)|Di(ht = 1)]− [Yi(ht)|Di(ht = 0)]︸ ︷︷ ︸
Observed Difference

= E[Yi(ht, 1)− Yi(ht, 0)|Di(ht = 1)]︸ ︷︷ ︸
Treatment on the Treated

+

E[Yi(ht, 0)|Di = 1]− E[Yi(ht, 0)|Di = 0]︸ ︷︷ ︸
Selection Bias

(F.1)

And selection bias can be further decomposed into the importance of selection on observed variables
and selection on latent factors (θ) (Heckman et al., 2018). We take advantage of our estimated
model parameters to present empirical evidence regarding the importance of selection bias driven
by the latent factors across treatment effect parameters in different training nodes:

Table F.1: Treatment Effect Decomposition

Decomposition by Training Node

t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)
(1) (2) (3)

Observed Differences 0.091 0.127 0.160
(0.001)*** (0.002)*** (0.003)***

Treatment on Treated 0.026 0.040 0.007
(0.000)*** (0.001)*** (0.001)***

Selection Bias (X) 0.014 0.018 0.044
(0.001)*** (0.001)*** (0.001)***

Selection Bias (θ) 0.051 0.068 0.109
(0.001)*** (0.002)*** (0.002)***

The results indicate that selection bias on unobservable characteristics plays a critical role in
explaining the differences between reduced form estimates and the treatment effects recovered using
estimated model parameters.
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G Additional Results

Table G.1: Static Returns to Job Training (in %): Observables in Wage Equations

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 2.56 3.73 0.69
[2.53,2.60] [3.65,3.81] [0.53,0.85]

TT (percentage points) 2.57 3.82 0.77
[2.49,2.65] [3.59,4.05] [0.65,0.89]

Pr(ATE < 0)× 100 43.63 45.47 49.15
[43.52,43.74] [45.35,45.60] [48.90,49.39]

Pr(TT < 0)× 100 43.64 45.37 49.22
[43.39,43.88] [45.08,45.67] [48.84,49.60]

Notes: Table G.1 presents the estimated Average Treatment Effects (ATE) and Treatment on the Treated (TT) parameters.
This version of the model includes observed characteristics in the wage equations. We show 95% confidence intervals in brackets.

Table G.2: Dynamic Returns to First-Period Job Training (in %): Observables in Wage
Equations

DATE DTT DTUT

Direct effect (short-term) 1.61 1.61 1.61
(0.01) (0.02) (0.01)
[38%] [38%] [38%]

Direct effect (medium-term) 2.64 2.65 2.63
(0.02) (0.05) (0.02)
[62%] [63%] [62%]

Continuation value 0.00 -0.07 0.02
(0.02) (0.04) (0.02)
[0%] [-2%] [0%]

Total 4.25 4.19 4.26
(0.02) (0.05) (0.03)

Notes: Table G.2 presents the estimated Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated
(DTT) and Dynamic Treatment on the Untreated (DTUT) of first-period training on the present value of earnings. This version
of the model includes observed characteristics in the wage equations. We present DATE, DTT, and DTUT as percentage of mean

baseline of the present value of earnings (E[Ỹi(0)]). We present standard errors in parenthesis and the percentage contribution
of each term in brackets.
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Table G.3: Static Returns to Job Training (in %): Share of Negative Returns, No Variation
from ε

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 2.54 3.99 0.78
[2.50,2.58] [3.91,4.08] [0.62,0.94]

TT (percentage points) 2.58 4.07 0.81
[2.50,2.66] [3.84,4.30] [0.69,0.93]

Pr(ATE < 0)× 100 15.22 4.78 37.93
[15.14,15.31] [4.73,4.84] [37.69,38.17]

Pr(TT < 0)× 100 15.30 4.64 39.79
[15.13,15.48] [4.52,4.77] [39.42,40.16]

Notes: Table G.3 presents the estimated Average Treatment Effects (ATE) and Treatment on the Treated (TT) parameters.
We present the share of workers who experience negative returns to training across training histories and over time, which
does not include incorporate idiosyncratic shocks to potential wages for its calculation. We show 95% confidence intervals in
brackets.
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H Returns to Job Training: Intensive-Margin and Long-Term Ef-
fects

Table H.1: Reduced-Form Estimates: Intensive-Margin Returns to Training

(1) (2) (3) (4)

Hours Trained (1-20) 0.113*** 0.107*** 0.051*** 0.005*
(0.006) (0.005) (0.004) (0.003)

Hours Trained (> 20) 0.329*** 0.249*** 0.099*** 0.012***
(0.006) (0.005) (0.004) (0.003)

OLS X
OLS + controls X
OLS + initial wage X
Individual FE X

Observations (N × T ) 74178 74178 74178 74178

Notes: Table H.1 estimates the reduced-form returns to short-duration (1-20 hours) and ‘long’-duration (> 20 hour)
courses. Control variables include college entrance exam performance, high school GPA and age. The dependent
variable is the monthly average of earnings in the first quarter following the training period. Column (1) presents
OLS regressions without control variables. Column (2) includes PSU test scores, high school GPA, a gender dummy,
age, and age squared. Column (3) includes the same control variables along with the first monthly salary observed
for each worker. Column (4) computes the first differences estimator. p-values are in parenthesis, where * p < 0.05,
** p < 0.01, and *** p < 0.001.
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Table H.2: Static Returns to Job Training: Courses > 20 Hours

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 3.85 5.35 3.54
[3.80,3.89] [5.27,5.44] [3.28,3.80]

TT (percentage points) 3.54 5.54 2.82
[3.40,3.68] [5.21,5.87] [2.65,2.98]

Pr(ATE < 0)× 100 41.45 43.39 45.71
[41.33,41.58] [43.25,43.52] [45.31,46.10]

Pr(TT < 0)× 100 42.05 43.43 47.34
[41.66,42.44] [42.99,43.86] [46.63,48.05]

Notes: Table H.2 presents the estimated Average Treatment Effects (ATE) and Treatment on the Treated (TT) parameters
along with the share of workers who experience negative returns to training across training histories and over time following
from an alternative version of the model in which we exclude workers who took training courses lasting between 1-20 hours. As
such, the estimated returns recover the effects of training participation in courses lasting longer than 20 hours.

Table H.3: Dynamic Returns to First-Period Training: Courses > 20 Hours

DATE DTT DTUT

Direct effect (short-term) 2.37 2.21 2.39
(0.01) (0.04) (0.01)
[37%] [36%] [37%]

Direct effect (medium-term) 3.74 3.74 3.74
(0.02) (0.07) (0.03)
[58%] [61%] [58%]

Continuation value 0.29 0.20 0.30
(0.01) (0.05) (0.01)
[5%] [3%] [5%]

Total 6.41 6.15 6.44
(0.03) (0.08) (0.03)

Notes: Table H.3 presents the estimated Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated
(DTT) and Dynamic Treatment on the Untreated (DTUT) of first-period training on the present value of earnings following
from an alternative version of the model in which we exclude workers who took training courses lasting between 1-20 hours. As
such, the estimated returns recover the effects of training participation in courses lasting longer than 20 hours.
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Table H.4: Static Returns to Job Training: Long-Term’ Earnings

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 2.43 4.57 1.22
[2.39,2.48] [4.47,4.66] [1.05,1.39]

TT (percentage points) 2.46 4.73 1.40
[2.37,2.55] [4.48,4.98] [1.27,1.52]

Pr(ATE < 0)× 100 44.70 44.88 48.66
[44.59,44.82] [44.75,45.01] [48.41,48.91]

Pr(TT < 0)× 100 44.72 44.71 48.64
[44.47,44.96] [44.41,45.00] [48.27,49.01]

Notes: Table H.4 presents the estimated Average Treatment Effects (ATE) and Treatment on the Treated (TT) parameters
along with the share of workers who experience negative returns to training across training histories and over time following
from an alternative version of the model in which we examine the returns to training on ‘long-term’ earnings following the
second training stint, as defined above.

Table H.5: Dynamic Returns to First-Period Training: ‘Long-Term’ Earnings

DATE DTT DTUT

Direct effect (short-term) 0.97 0.98 0.96
(0.01) (0.02) (0.01)
[17%] [17%] [16%]

Direct effect (medium-term) 4.62 4.57 4.64
(0.03) (0.07) (0.04)
[79%] [79%] [79%]

Continuation value 0.28 0.25 0.28
(0.02) (0.05) (0.03)
[5%] [4%] [5%]

Total 5.87 5.79 5.89
(0.03) (0.07) (0.04)

Table H.5 presents the estimated Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated (DTT)
and Dynamic Treatment on the Untreated (DTUT) of first-period training on the present value of earnings following from
an alternative version of the model in which we examine the returns to training on ‘long-term’ earnings following the second
training stint, as defined above.
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I Returns to Job Training: Mixture of Three Normals

Table I.1: Static Returns to Training: Mixture of 3 Normals

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 2.79 4.07 0.72
[2.75,2.83] [3.99,4.16] [0.56,0.88]

TT (percentage points) 2.81 4.07 0.86
[2.73,2.89] [3.84,4.30] [0.74,0.98]

Notes: We report estimates of the Average Treatment Effects (ATE), Treatment on the Treated (TT), and likelihood of
negative treatment effects across three training nodes. The first column show treatment effects after individuals make their first
choice (t = 1). The second and third columns show estimates for after individuals make a second choice (t = 2), conditional on
two possible choices in the first period (D1 ∈ {0, 1}). We show 95% confidence intervals in brackets.

Table I.2: Dynamic Returns to Training: Mixture of 3 Normals

DATE DTT DTUT

Direct effect (short-term) 1.71 1.73 1.71
(0.01) (0.02) (0.01)
[37%] [38%] [37%]

Direct effect (medium-term) 2.91 2.90 2.92
(0.02) (0.05) (0.02)
[63%] [63%] [63%]

Continuation value 0.00 -0.05 0.02
(0.02) (0.04) (0.02)
[0%] [-1%] [0%]

Total 4.63 4.58 4.65
(0.02) (0.05) (0.03)

Note: We estimate Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated (DTT) and Dynamic
Treatment on the Untreated (DTUT) of training in t = 1 on the present value of earnings.
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Figure I.1: Goodness of Fit: Training Decisions
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Note: In Figure I.1, we compare the share of workers who followed each of the four possible training histories in
their first two years in the labor force. A training history is given by h3 = (h;h′), where the first and second entry
indicate training decisions in the first and second period, respectively.

Figure I.2: Distribution of Latent Factors
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Note: In Figure 3, we show the estimated density of the latent factors. We obtain this density using the simulated sample
from our estimated model. We approximate the distribution of the individual’s unobserved ability factor by a mixture of three
normal distributions. The first panel presents the density of the latent ability factor (θ1), whereas the second panel shows the
corresponding density for the latent productivity factor (θ2).
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J Returns to Job Training: Stayer Sample

Table J.1: Static Returns to Training: Stayer Sample

Treatment effect t = 1 t = 2 (D1 = 0) t = 2 (D1 = 1)

ATE (percentage points) 3.72 3.16 1.04
[3.68,3.76] [3.08,3.25] [0.87,1.20]

TT (percentage points) 3.74 3.15 1.03
[3.66,3.82] [2.90,3.39] [0.91,1.15]

Notes: We report estimates of the Average Treatment Effects (ATE), Treatment on the Treated (TT), and likelihood of
negative treatment effects across three training nodes. The first column show treatment effects after individuals make their first
choice (t = 1). The second and third columns show estimates for after individuals make a second choice (t = 2), conditional on
two possible choices in the first period (D1 ∈ {0, 1}). We show 95% confidence intervals in brackets.

Table J.2: Dynamic Returns to Training: Stayer Sample

DATE DTT DTUT

Direct effect (short-term) 2.14 2.14 2.14
(0.01) (0.02) (0.01)
[41%] [41%] [41%]

Direct effect (medium-term) 3.00 3.01 2.99
(0.02) (0.04) (0.02)
[58%] [58%] [57%]

Continuation value 0.07 0.02 0.09
(0.02) (0.04) (0.02)
[1%] [0%] [2%]

Total 5.21 5.17 5.22
(0.02) (0.05) (0.03)

Note: We estimate Dynamic Average Treatment Effects (DATE), Dynamic Treatment on the Treated (DTT) and Dynamic
Treatment on the Untreated (DTUT) of training in t = 1 on the present value of earnings.
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Figure J.1: Goodness of Fit: Training Decisions
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Note: In Figure J.1, we compare the share of workers who followed each of the four possible training histories in
their first two years in the labor force. A training history is given by h3 = (h;h′), where the first and second entry
indicate training decisions in the first and second period, respectively.
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