Multidimensional Skills and Gender Differences in STEM Majors

Fernando Saltiel*

McGill University

August 15, 2022

Abstract

This paper studies the relationship between pre-college skills and gender differences in STEM
majors. I use longitudinal data to estimate a generalized Roy model of initial major choices
and subsequent graduation outcomes. I recover students’ latent math ability, non-cognitive
skills and math self-efficacy. High math ability women have lower math self-efficacy than men.
Mathematical ability and self-efficacy shape the likelihood of STEM enrollment. A lack of
math self-efficacy drives women’s drop out from STEM majors. I find large returns to STEM
enrollment for high math-ability women. Well-focused math self-efficacy interventions could

improve women’s STEM graduation rates and labor market outcomes.
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1 Introduction

Women make-up just one fourth of recent graduates in math-intensive STEM majors in the United
States (Kahn and Ginther, 2017). As these majors are among the highest-paying degrees (Webber,
2014; Patnaik et al., 2020), examining the drivers of women’s participation in STEM majors is an
important step towards improving their labor market outcomes. In this context, colleges across
the country have begun implementing policies aimed at boosting women’s STEM enrollment rates
(Olson and Riordan, 2012). Nonetheless, while promoting enrollment in STEM majors is a critical
first step for reducing gender gaps, half of initial enrollees fail to complete a STEM degree (Altonji
et al., 2016), and the dropout rate is larger for women than for men (Astorne-Figari and Speer,
2019). As a result, understanding the factors which shape students’ initial and final major choices
can help in designing more effective policies to promote STEM participation and persistence.

In this paper, I examine the interaction between multidimensional skills and college major
choices, focusing on women’s enrollment and graduation from math-intensive STEM majors. The
existing literature has examined the how students’ test scores affect STEM participation rates
(Turner and Bowen, 1999; Speer, 2017) and extensively analyzed the importance of preferences
and beliefs in shaping major choices (Arcidiacono, 2004; Zafar, 2013; Wiswall and Zafar, 2015,
2018; Reuben et al., 2017; Patnaik et al., 2020). However, test scores are affected by background
characteristics and contaminated with measurement error (Borghans et al., 2008; Kautz et al., 2014),
thus potentially mismeasuring the importance of skills in shaping STEM participation. Moreover,
other skill dimensions may play an important role in determining students’ major choices.

In this context, I consider mathematical self-efficacy as a potential driver of gender differences in
STEM participation. Math self-efficacy measures a student’s perception of her capacity to succeed
at math-related problems and courses, and efficacious students are more likely to pursue challenging
math courses, exert greater effort in class and persist in solving difficult math problems (Betz and
Hackett, 1983).! As such, having higher math self-efficacy may increase the likelihood that students
pursue STEM majors and that they successfully persist through graduation.

To understand how multidimensional skills shape students’ educational attainment, I present
and estimate a generalized Roy model, which encompasses sequential decisions of college major
choices and subsequent completion outcomes. In this model, which builds on Heckman et al. (2016,
2018), students first select a college major among five broad fields. Students subsequently decide
whether to remain in college or to drop out, and continuers lastly decide whether to complete their
initial degree or switch majors. Upon completing their studies, students enter the labor market,
decide whether to work, and if they choose to do so, earn hourly wages. Throughout the model, indi-
vidual decisions and labor market outcomes are a function of observed characteristics and students’
multidimensional skills, encompassing their math ability, non-cognitive skills and mathematical

self-efficacy. I thus distinguish non-cognitive skills capturing students’ grit and persistence from

'The concept of self-efficacy was introduced by Bandura (1977) and it is defined as “beliefs in one’s capabilities
to organize and execute the courses of action required to manage prospective situations”. A person’s self-efficacy is
domain-specific and it measures a person’s perception of her capacity to succeed at specific tasks in that domain.



their self-efficacy in mathematics. I estimate the model separately for men and women to capture
gender differences in the interaction between skills, major choices and labor market outcomes.

I implement the model using Educational Longitudinal Study of 2002 (ELS) data, which follows
a nationally-representative cohort of 10" graders for ten years. ELS data includes detailed infor-
mation on multiple measures of math test scores, high school grades, non-cognitive skills measures
— encompassing students’ action control, control expectation and their instrumental motivation,
multiple math self-efficacy measures, detailed information on college major choices and early-career
labor market outcomes, capturing respondents’ hourly wages at age 25.

I posit a measurement system of observed skill measures to recover the distribution of multi-
dimensional latent abilities, following Carneiro et al. (2003); Hansen et al. (2004); Heckman et al.
(2006), among others. This approach allows me to correct for measurement error in test scores
while controlling for the contribution of background characteristics to observed skill measures. I
take advantage of the various observed measures in the data to recover students’ latent math ability,
a non-cognitive skill factor and their latent mathematical self-efficacy, allowing for the latent factors
to be correlated (Prada and Urzia, 2017). First, I find that men have higher math self-efficacy than
women, in the range of 0.4 standard deviations, and no discernible gender gaps emerge in the other
two skill dimensions. Importantly, while math ability is positively correlated with self-efficacy, the
correlation is far higher for men (0.488) than for women (0.304). Altogether, these results indicate
that among high-math-skilled students, a far lower share of female students have high self-efficacy
in math compared to their male peers.

Both math ability and self-efficacy are strong predictors of STEM enrollment for both men and
women. For instance, for women in the top math ability decile, only 5.5% of those who are in the
bottom self-efficacy decile enroll in STEM, whereas 13.3% of those in the top decile do. As a result,
the relative lack of women at the top of the joint skill distribution reduces their participation in
math-intensive majors. I similarly find that among the highest math-ability males, self-efficacy
also increases their STEM participation, as 35.4% of men in the top joint decile of math ability
and self-efficacy enroll in STEM. As such, a sizable gender gap in STEM participation remains
conditional on latent skills, fitting in with prior work highlighting the importance of preferences in
driving STEM gaps (Zafar, 2013; Wiswall and Zafar, 2015, 2018). On the other hand, an increase
in women’s mathematical self-efficacy by a full standard deviation would increase their STEM
enrollment rates by upwards of 45%, thus highlighting the importance of considering multiple skill
dimensions when analyzing college major choices.

In terms of subsequent STEM completion, while 62% of men initially enrolled in these majors
end up graduating, just 55% of women do so. There is re-sorting on math ability for both men and
women, such that only the highest math-skilled students graduate from these majors. However,
self-efficacy plays a far larger role for women than it does for men in leading to degree completion.
44% of male enrollees in the bottom self-efficacy quintile complete a STEM degree, rising to 67%
for those in the top quintile. On the other hand, while only 29% of female STEM enrollees in

the bottom self-efficacy quintile successfully complete a degree, the completion rate for those in



the top quintile more than doubles, exceeding 66%. Moreover, I do not find evidence that higher
non-cognitive skills increase the likelihood of STEM completion for women, thus remarking the
importance of extending the analysis to incorporate additional dimensions of students’ skills besides
those traditionally incorporated in the literature on non-cognitive skills (Heckman et al., 2006). All
in all, a shortfall in math self-efficacy reduces the likelihood that women enroll and complete a
STEM major, thus contributing to gender differences in STEM participation rates.

Despite the efforts aimed at increasing women’s STEM participation, the extent to which all
female students would enjoy positive returns from pursuing these majors remains an open question
(Altonji et al., 2012, 2016). In this context, the model allows me to recover potential wages
across initial majors, and since wage outcomes also depend on students’ latent abilities, I can
estimate gender-specific heterogeneous returns to STEM enrollment across the ability distribution.
I show that the returns to STEM enrollment for women vary significantly by the alternative major
under consideration. While STEM enrollment delivers positive returns relative to the life sciences,
the average returns against business and health fields are negative.? On the other hand, I find
significant heterogeneity in these returns, such that high math ability women would largely benefit
from enrolling in STEM. Moreover, as I approximate the latent utilities associated with each initial
major, I can identify students’ second-best majors (Kirkeboen et al., 2016). High math-ability
women in other majors with a next-best option in STEM would have enjoyed positive returns to
STEM enrollment instead. I lastly estimate the conditional returns to STEM graduation after
enrollment, finding all women would benefit from finishing these degrees relative to switching to
other majors or to dropping out from college. The returns to conditional STEM completion are
strongly increasing in the math ability distribution.

Lastly, the importance of math self-efficacy in predicting women’s STEM participation, coupled
with the malleability of non-cognitive skills through adolescence (Kautz et al., 2014), suggests
that interventions aimed at boosting self-efficacy could have a sizable impact on women’s STEM
participation rates. Using the estimated model parameters, I show that increasing high-math-
ability women’s self-efficacy by 0.25 standard deviations would lead to increased STEM enrollment
and graduation by 10-15 percent relative to baseline participation rates. In light of the positive
returns to STEM enrollment and completion for high-skilled women, I find that the simulated math
self-efficacy increase would lead to small increases in women’s wages in the early career.

This paper contributes to various strands of the literature, standing at the intersection of prior
work analyzing the importance of non-cognitive skills, college major choices and gender differences
in educational attainment. First, a number of important papers have examined the drivers of
students’ college major choices, including the importance of pre-college skills in shaping initial
major choices and subsequent completion outcomes (Altonji, 1993; Arcidiacono, 2004; Stinebrick-
ner and Stinebrickner, 2014; Kinsler and Pavan, 2015; Arcidiacono et al., 2016; Humphries et al.,

2017, 2019). I contribute to this literature by analyzing how multiple dimensions of students’ non-

2The returns to major are estimated using evidence on age-25 hourly wages. These outcomes do not capture the
full extent of lifecycle returns to college majors (Webber, 2014; Altonji et al., 2016; Patnaik et al., 2020).



cognitive skills affect their major choices and conditional completion outcomes, while documenting
heterogeneous impacts by gender. This paper further fits in with an extensive literature examining
the drivers of gender differences in major choices, including the importance of high school prepa-
ration (Joensen and Nielsen, 2016; Shi, 2018; Aucejo and James, 2021; Card and Payne, 2021),
test scores and cognitive skills (Turner and Bowen, 1999; Dickson, 2010; Speer, 2017; Astorne-
Figari and Speer, 2019; Jiang, 2021), preferences and beliefs (Zafar, 2013; Wiswall and Zafar, 2015,
2018; Delaney and Devereux, 2019; Bordén et al., 2020; Kugler et al., 2021; Ahn et al., 2022),
teachers (Carrell et al., 2010; Carlana, 2019) and peers (Fischer, 2017; Mouganie and Wang, 2020;
Brenge and Zoélitz, 2020). I extend this literature by demonstrating the importance mathematical
self-efficacy in shaping differential STEM enrollment by gender and by showing its importance for
STEM completion rates among women.

I further contribute to an extensive literature which has estimated the returns to majors using
a variety of approaches. These identification strategies encompass linear regressions (Rumberger
and Thomas, 1993; Chevalier, 2011; Webber, 2014; Deming and Noray, 2020), varied structural ap-
proaches (Arcidiacono, 2004; Kinsler and Pavan, 2015; Humphries et al., 2019; Mourifie et al., 2020)
and regression discontinuity designs (Hastings et al., 2013; Kirkeboen et al., 2016). I present novel
evidence by recovering gender-specific returns to enrolling in STEM majors, estimating heteroge-
neous returns against second-best majors and presenting conditional returns to STEM completion.

Lastly, this paper further contributes to a growing literature on the importance of non-cognitive
skills in shaping educational and labor market outcomes (Heckman et al., 2006; Lindqvist and
Vestman, 2011). Recent work has identified the importance of different dimensions of the non-
cognitive skill vector: Humphries et al. (2019) separately identify grit and interpersonal skills and
Humphries and Kosse (2017) distinguish non-cognitive skills from preferences and personality traits.
I add to this literature by showing the differential importance of math self-efficacy in shaping major
choices relative to the estimated importance of ‘traditional’ non-cognitive skill constructs. I further
show the importance of this distinction for understanding gender gaps in major choices.

The rest of the paper is structured as follows. In Section 2, I describe the data sources and
present descriptive evidence on the drivers of college major choices. In Section 3, I introduce the
model of college major choices, along with the estimation approach. In Section 4, I present evidence
on the latent factors and on sorting patterns into initial majors and final educational outcomes. In
Section 5, I present the gender-specific returns to majors and the conditional returns to completing
such majors. In Section 6, I present the estimated impacts from a simulated intervention aimed at

boosting women’s math self-efficacy. I conclude and discuss my results in Section 7.

2 Data Sources and Summary Statistics

2.1 Data Sources

This paper uses longitudinal data from the Educational Longitudinal Survey (ELS) of 2002 (Ingels
et al., 2014). The ELS is a nationally-representative survey of 16,700 10** grade students in 2002



who were interviewed, along with their parents and teachers, in the initial year, and in 2004, 2006,
and 2012. The first two surveys include detailed information on students’ individual characteris-
tics, including their race and gender, family characteristics, including family composition, parents’
educational attainment and total family income. Moreover, ELS data includes multiple measures
of students’ academic performance, including their high school GPA, their performance on a math-

ematics and reading test developed by the Department of Education in 10

2th

grade, along with a
follow-up math exam in 12"* grade.

ELS data additionally includes various questions in the baseline survey measuring respondents’
non-cognitive skills. These questions capture students’ expectations of success in academic learning
(control expectation scale), their motivation to perform well academically in order to reach exter-
nal goals like future job opportunities or financial security (instrumental motivation) and their
perceived effort and persistence when facing difficulties (action control), which is closely related to

grit (Duckworth et al., 2007).3

Self-Efficacy. As discussed in the introduction, self-efficacy captures a person’s perceived capacity
to accomplish a specific task.? Assessments of self-efficacy must be ‘domain-specific’ in order to
correctly measure this concept (Pajares, 1996; Bandura, 1997). The baseline survey of the ELS
thus included a battery of questions regarding students’ self-efficacy in Mathematics and English.

In particular, students in the baseline survey were prompted to answer the following questions:

1. Confident I can do an excellent job on my Math/English tests.

2. Certain I can understand the most difficult material presented in Math/English texts.

3. Confident I can understand the most complex material presented by my Math/English teacher.
4. Confident I can do an excellent job on my Math/English assignments.
5

. Certain I can master the skills being taught in my Math/English class.

These questions were answered on a four-point Likert scale encompassing almost never, sometimes,
often, and almost always as options. Importantly, men are far more likely than women to respond
they are ‘almost always’ confident in their math-related tasks than women, yet this is not the case
in English (Table A.1). In light of the gender gaps in math self-efficacy and given my interest
in understanding the drivers of STEM participation, I focus on mathematical self-efficacy for the
rest of the paper. I additionally rely on students’ responses to math self-efficacy questions in the
first follow-up survey, and create a math self-efficacy variable in each survey round after applying

principal component analysis to the five underlying questions.®

3These three ‘traditional’ non-cognitive skill measures are constructed by ELS staff using exploratory factor
analysis on the responses to specific questions (Saltiel, 2020). For the descriptive analysis presented below, I construct
a non-cognitive skills index from a principal components analysis (PCA) across these three measures.

“Mastery experience — where students interpret their past performance to revise their judgments of competence
in that task — is the main driver of their self-efficacy (Bandura, 1997).

5To examine whether the math self-efficacy and non-cognitive variables capture different underlying constructs, I
perform an exploratory factor analysis (EFA) using the five measures in the ELS (Figure A.1). Assuming orthogonal



Sample Selection. Since the goal of this paper is to understand the interaction between skills and
college major choices, I restrict my sample to students enrolled in four-year college by the second

follow-up survey (age 20).°

Nonetheless, the final sample includes students who do not graduate
with a four-year degree, bachelor’s recipients and students in post-graduate education. I consider
students’ progression through college majors by first using their reported major in the second
follow-up survey, including those who had not yet declared one. For students who had earned a
Bachelor’s degree by 2012, I examine their final major at graduation using information from their
college transcripts. College majors are defined using a two-digit major code from the Department of
Education’s Classification of Instructional Programs (CIP), yielding fifty different major categories.
Since working with a large number of majors is inconvenient for empirical analysis, the existing
literature has often analyzed majors by aggregating them into broader categories. Since the STEM
gender gap is largely driven by differences in math-intensive fields (Kahn and Ginther, 2017), I group
majors into five categories, which include math-intensive STEM, life sciences, business, health, and
the remaining majors.”

I analyze respondents’ labor market outcomes using information reported in the third follow-
up survey. Students report information on their labor market outcomes in 2011, covering age-25
outcomes for the majority of the sample. Respondents indicate whether they worked, the number
of weeks and hours per week they were employed and their total employment earnings during the
year. I use these variables to construct a measure of hourly wages for each individual in the sample.?

I first restrict the baseline ELS sample to include students who take the baseline exams along

with those who report at least one valid math self-efficacy measure.’

Restricting the sample to
four-year college enrollees substantially reduces the sample to 2,899 women and 2,284 men, fitting
in with higher rates of college enrollment for women (Goldin et al., 2006). I lastly drop individuals
who do not report their final educational attainment or valid labor market outcomes in the endline

survey, yielding a final sample of 4,599 students, encompassing 2,615 women and 1,984 men.'’

factors, EFA indicates the existence of two factors. The first factor loads on the three ‘traditional’ non-cognitive
skill measures. The second encompasses both math self-efficacy measures, action control and control expectation.
Instrumental motivation only loads on the first factor. These results inform the measurement system in Section 3.2.

5T examine whether men and women are differentially selected into the four-year college enrollee sample on their
baseline test scores (Table B.1). Higher-skilled students are more likely to initially enroll in four-year college, but
such sorting patterns largely do not vary by gender.

"Math-intensive STEM fields include degrees in engineering, computer science, mathematics, statistics and
physics. Life science majors encompass biology degrees. Business degrees include majors in business, manage-
ment and marketing. Health includes majors in clinical sciences and for health professionals. The ”Other” group
includes the remaining majors, and individuals who had not yet declared an initial major.

8To avoid including part-time workers in the returns to majors, I examine wage outcomes for individuals who
reported having worked at least 500 hours in 2011 and earned at least five dollars an hour. Wages are top coded at
$125/hour. Results are robust to alternative restrictions. The framework in Section 3 models employment decisions.

°T observe the full set of observed skill measures for 60.4% of the sample. Observed characteristics are only
weakly predictive of the likelihood of having an observed measure and insignificant across a number of measures
(Table A.2). In the reduced form analysis, I impute the sample average for individuals with missing test scores and
include a dummy variable to account for non-response. As discussed in Section 3, the model is identified despite
small differences in non-respondents’ observed characteristics.

0Table A.3 outlines how the various sample restrictions result in the final sample used in the paper.



2.2 Reduced-Form Evidence

Table 1: Baseline Characteristics

Panel A. Women
Full Sample STEM Life Sciences Business  Health Other

B @) 3) (4) (5) (©)
Background Characteristics
Both Parents 0.81 0.81 0.85 0.79 0.82 0.82
Parental Education 15.67 16.31 15.97 15.37%F%  15.36%*F*  15.72%%*
HH Income 0.65 0.71 0.64 0.61* 0.61* 0.66
Underrepresented Minority 0.18 0.22 0.20 0.19 0.20 0.18
Skill Measures
Baseline Math Exam -0.11 0.28 0.15 S0.19%FF 0. 28%FF (), 11F**
HS GPA 0.13 0.31 0.39 0.06** 0.05%* 0.11%*
Baseline Math Self-Efficacy -0.16 0.29 0.16 -0.04%FF Q. 15%FF  _(.25%**
Non-Cognitive Skills (PCA) 0.02 0.21 0.33 -0.04%* 0.02 -0.02*+*
Educational Outcomes
College Dropout 0.15 0.18 0.13 0.18 0.18 0.14
Complete Initial Major 0.67 0.55 0.51 0.65%* 0.46 0.74%%*
Labor Market Outcomes
Employed 0.77 0.77 0.65%* 0.81 0.77 0.77
Hourly Wages 18.69 20.19 16.92%* 19.43 22.97* 17.65%*
Observations 2,615 119 176 297 370 1,653
4.6% 6.7% 11.4% 14.1% 63.2%

Panel B. Men
Full Sample STEM Life Sciences Business  Health Other

1 2 (3) (4) 5) (6)
Background Characteristics
Both Parents 0.83 0.83 0.82 0.87 0.87 0.82
Parental Education 15.91 15.99 16.50%* 15.91 15.16%%* 15.86
Family Income (Log) 0.70 0.70 0.71 0.76 0.55%* 0.69
Underrepresented Minority 0.16 0.18 0.17 0.16 0.14 0.15
Skill Measures
Baseline Math Exam 0.15 0.47 0.45 0.06%**  _0.20%**  (.05%**
HS GPA -0.16 0.12 0.22 -0.23%F* 0.05 -0.30%%*
Baseline Math Self-Efficacy 0.23 0.60 0.42* 0.17%%%  0.19%*¥*  0.10%**
Non-Cognitive Skills (PCA) -0.02 0.08 0.18 -0.02 0.17 -0.10%*
Educational Outcomes
College Dropout 0.17 0.14 0.13 0.12 0.14 0.20%*
Complete Initial Major 0.60 0.62 0.53* 0.70%* 0.22%** 0.60
Labor Market Outcomes
Employed 0.77 0.81 0.59%** 0.85 0.71% 0.75%*
Hourly Wages 20.02 23.84 18.85%** 21.06*** 25.81 18.01%**
Observations 1,984 369 127 335 69 1,084

18.6% 6.4% 16.9% 3.5% 54.6%

Notes: Table 1 presents summary statistics for the main sample of female and male four-year college enrollees considered in the
paper. HH income is a binary variable that equals one for students in households above the U.S. household median income in
2002. All test score and non-cognitive skill measures are standardized in the full sample. Educational outcomes are observed in
the endline survey round, conducted in 2012. Employed individuals are those who worked at least 500 hours in 2011 and hourly
wages are calculated by dividing total employment earnings by the number of hours worked. The last five columns present
averages for students across each initial major and the stars in last four columns indicate the difference of students enrolled in
STEM majors relative to those in the life sciences, business, health and other majors, respectively, following from a two-sided
t-test. * p < 0.10, ** p < 0.05, and *** p < 0.01.

Major Choices. In the first and second panels of Table 1, I present summary statistics for the
women and men included in the main sample. The first column presents average characteristics
by gender. Skill measures, standardized in the full sample, show men outpace women in math
exam performance, whereas women earn higher grades in high school (Goldin et al., 2006; Pope
and Sydnor, 2010). Despite no discernible gender gaps in non-cognitive skills, I find significant

differences in math self-efficacy, as men’s self-efficacy exceeds women’s by 0.39 standard deviations.



The last row in each panel documents the number of students enrolled across initial majors,
demonstrating sizable gender differences in the prevalence of STEM enrollment, as just 4.6% of
women start in these majors, compared to 18.6% of men. Both men and women enrolled in STEM
tend to come from higher-educated households vis-a-vis their peers in other majors. Importantly,
STEM enrollees outpace their counterparts in other majors in the baseline math test score as well
as in math self-efficacy, with students in life sciences earning the second-highest scores in these
two measures. In fact, both men and women exhibit stronger sorting-into-STEM on their math
self-efficacy than on their non-cognitive skills, remarking the importance of analyzing different
dimensions of students’ skills as a driver of major choices.!! Lastly, a larger proportion of women
complete their initial major than men on average, yet this pattern is reversed in math-intensive
STEM fields, as just 55% of female STEM enrollees complete their majors, compared to 62% of
their male counterparts.

Figure 1 further shows that male and female students at the top of the math test score distri-
bution are far more likely to enroll in STEM, yet large gender differences remain across the entire
distribution. The second panel shows that similar patterns remain across the math self-efficacy

distribution.

Figure 1: STEM Enrollment Rates by Math Test Scores and Self-Efficacy

Share Enrolled in STEM Majors
\
\

Share Enrolled in STEM Majors
\
\

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Math Test Score Percentile Math Self-Efficacy Percentile

-- Men — Women -- Men — Women

(a) Math Test Score (b) Math Self-Efficacy

Note: Figure 1 presents the share of STEM enrollees by gender by their percentile in the math test scores (Panel A) and
mathematical self-efficacy (Panel B) distributions. The math test score and self-efficacy measures are each constructed through
principal component analysis using the respective baseline and follow-up variables.

Labor Market Outcomes. Table 1 shows that health fields are the highest-paid in the early
career for both genders, fitting in with Altonji et al. (2012). At the same time, STEM enrollees
earn higher average wages compared to their peers in the remaining majors, and these differences

are significant with respect to students in life sciences and ‘Other’ degrees.

H\Math test scores and self-efficacy predict STEM enrollment in a multinomial logit that directly controls for other
skill measures and background characteristics (Table A.4). These patterns are robust to controlling for reading test
scores (Table A.5), as Aucejo and James (2021) had found that women’s relative advantage in verbal skills contributes
to the STEM gender gap in the UK.



Table 2: OLS Estimates: Wage Returns to Majors by Gender

Women Women Men Men
v @ B @
STEM 0.060 0.021 0.270***  0.250***
(0.063)  (0.062) (0.034) (0.035)
Life Sciences -0.042 -0.068 0.005 -0.014
(0.047)  (0.047)  (0.065)  (0.065)
Business 0.107***  0.104*** 0.173*** 0.167***
(0.031)  (0.031)  (0.032)  (0.032)
Health 0.253***  0.257**  0.323*** 0.307***
(0.033)  (0.033) (0.083) (0.083)
Background Characteristics Yes Yes Yes Yes
Test Scores No Yes No Yes
Observations 2,007 2,007 1,520 1,520

Note: Table 2 presents evidence from a linear wage regression examining the returns to enrolling in different majors for women
(first two columns) and for men (last two columns). The first and third columns include individual and family background
characteristics as control variables. The second and fourth columns add baseline test scores as controls. The omitted category
are students in ‘Other’ majors. The sample includes individuals in the estimation sample who worked at least 500 hours in
2011 and earned at least five dollars per hour. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

However, as students sort into STEM based on their observed characteristics and skills, these
wage differences do not capture the returns to such majors. In Table 2, I thus estimate an OLS
regression to explore the returns to majors upon controlling for background characteristics and
baseline skills. Female health enrollees enjoy a larger wage premia than those in STEM even when
controlling for baseline skill measures (column 2), whereas male STEM enrollees outearn their peers
in life sciences, business and ‘Other majors’ in the corresponding specification (column 4).

These results represent a first approximation towards understanding the gender-specific returns
to college majors, yet they rely on a strong selection-on-observables assumption. To recover the re-
turns to college majors, I introduce a discrete choice model which accounts for endogenous selection

of college majors, final educational attainment and labor market outcomes for men and women.

3 Model of College Major Choices

In this section, I introduce a generalized Roy model to capture the dynamics of major choices,
educational attainment and associated labor market outcomes for students initially enrolled in four-
year college. In the model, a vector of latent abilities affects educational decisions and associated
labor market outcomes. The model thus follows a generalized Roy (1951) framework, fitting in with
previous work by Heckman et al. (2006, 2018); Humphries et al. (2019); Rodriguez et al. (2022),
allowing for individuals’ choices and outcomes to depend both on their observed and unobserved
characteristics.

Educational decisions are modeled sequentially, as follows: students first select an initial college
major among the five options presented above. Initial major choices are unordered, as there is
no natural ordering of such options. Students subsequently decide whether to continue in college

or to dropout, and college continuers lastly choose whether to remain in their initial major or to

10



switch to a different degree. Upon completing their educational attainment, students enter the
labor market and after making an employment decision, earn hourly wages. I estimate the model
separately for males and females to allow for differential sorting patterns by gender and to capture
gender-specific labor market outcomes.

This framework combines elements from reduced form analysis and structural models to correct
for endogenous educational choices and associated labor market outcomes, yet it does not postulate
preferences and/or information sets, as in Arcidiacono (2004); Zafar (2013); Stinebrickner and
Stinebrickner (2014); Wiswall and Zafar (2015). As such, the model does not recover the importance
of belief updating and learning in the major choice process. On the other hand, I can recover the
full distribution of counterfactuals — which allow me to estimate various policy-relevant treatment
effects — while accounting for the importance of multidimensional skills in shaping major choices

and labor market outcomes.

3.1 Model Structure

Initial Major Choice. After graduating from high school and enrolling in four-year college,
students select an initial major m € M, where M encompasses the set of majors in Section 2.
Their major choice depends on their observed characteristics and their latent ability (0). Let Vﬁn
be the utility for student i of gender G (male m or female f) of starting in major m.'?2 V;,,
represents an approximation of the value of each major for individual ¢, as it incorporates students’

perceived economic returns to each major and non-pecuniary tastes. V; ,, is given by:
‘/i,m = 6sz,m + amB; + Ei,m fO?" meM (1)

where X; ,, includes observed characteristics measured at baseline affecting major choices, 8; rep-
resents the vector of latent ability and €;,, is an error term which is independent of observed
and unobserved characteristics (€;m L Xim,0;) as well as across major choices (€;m L & for
m,m’ € M). Conditional on observed characteristics and latent ability, major choices are un-

ordered. As such, students select the college major with the highest utility:

D; yy = argmax {V; y } .
meM
Since the existing literature on college majors has previously highlighted the importance of recov-
ering the returns to majors relative to students next-best options (Kirkeboen et al., 2016; Altonji
et al., 2016), the second-best major is given by: N;; = argmax,c yjm- {Vim} where N; ; is the

second-best major and { M|m*} captures the set of major choices besides the preferred choice m*.

Final Educational Attainment. Since a sizable share of initial four-year college enrollees fail

to complete a degree, the model further incorporates the college completion margin. For a student

2For notational simplicity, I omit the gender superscript in the rest of the Section.
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i who started in major m, her decision to continue in college (C;,, = 1) also depends on their

observed characteristics and latent skills. This decision is given by:
Cim = 1 [Bm,cXim,c + m,cOi + €im,c > 0] (2)

where 1 is an indicator function, &; , ¢ is independent of observed and unobserved characteristics
(€im,c L Ximc,03). Xim,c encompasses observed characteristics affecting the college continuation
decision. Students who dropout of college (C; , = 0) subsequently enter the labor market. Students
who remain enrolled then decide whether to complete their initial major (Fj,, = 1) or to switch to

a different degree (Fj,, = 0). This decision is given by:
E,m =1 [/Bm,FXi,m,F + Oém,FOi + €im,F > 0] (3)

where ¢; ,, F is independent of observed, unobserved characteristics as well as of the error terms
in equations (1)-(2). Xj,, r encompasses observed characteristics affecting the major switching
decision. All in all, the combination of educational encompassing the choices outlined in equations
(1)-(3) — given by [Djm,Cim, Fim], leads to a final level of attainment s € S captured by the

dummy variable D; ;.

Labor Market Outcomes. In this framework, hourly wages at age 25 represent the main labor
market outcome of interest, yet wages are only observed for individuals who are employed at age

25 (E; s = 1). I similarly model the employment decision through the following linear specification:
Eis =1[BspXis e+ 05 50; +visr > 0] (4)

where X; ¢ g includes the same observed characteristics previously included in the choice equations,
as these variables may directly affect labor market outcomes (Heckman et al., 2018). The error
term is independent of observed and unobserved characteristics. Potential hourly wages (Y; s) vary

across students’ final educational attainment and are given by the following separable specification:
Y;,s = 68,YXi,S,Y + as,Yai + Vi,s,Y (5)

where v; 5y captures an idiosyncratic shock to hourly wages, which is independent of observed
and unobserved characteristics (v; sy L Xjsy,0;). Importantly, the model allows me to recover
potential wages (Y; ) for all individuals in the analysis, regardless of whether they worked in 2011.
As is standard in discrete choice models with multiple decisions (Heckman et al., 2016), I further
assume that the error terms are independent across schooling decisions in equations (1)-(3), the
employment decision and potential wage outcomes.'3

While equation (5) defines wages across final levels of attainment, this parameter does not

allow me to estimate the returns to initial major choices. As a result, I follow the Quandt (1958)

3Specifically, visy L vigy Lvise (Vs,8 €8S) L{cim L cime Leimr [¥Vm,m' € M}
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switching regression framework to define potential wages across initial majors m € M in:
}/i,m = }fi,m,F(Ci,m X »Fz,m) + }/i,m,S[Ci,m X (1 - —Fz,m)] + }/i,m,Co(l - Cz,m) fOT‘ m e M (6)

where Y; ,,, F represents wages for students in major m who continued in college and completed their
initial major.'* The structure of the model implies that 8; drives the cross-correlations of major

choices and labor market outcomes. Identifying its distribution is thus of paramount importance.

3.2 Measurement System

The latent ability vector is unobserved to the econometrician, as there are no direct measures of
ability available. Moreover, observed test scores measure latent abilities with error. As such, I
follow an extensive literature and allow for @ to be proxied by multiple skill measures available
in the ELS. Formally, I posit a model in which observed skill measures are a linear outcome of
students’ latent abilities (8) and of their background characteristics.!®

As outlined in Section 2, I observe two measures of students’ math performance, their high school
grades, three non-cognitive skill measures and two math self-efficacy variables. I thus consider three
components of the latent ability vector, which encompass mathematical self-efficacy (fsg), non-
cognitive skills (fy¢) and mathematical ability (657).'% Following the evidence presented in Figure
A.1, which showed that self-efficacy measures load on a single factor whereas ‘traditional’ non-
cognitive skill measures load on an additional factor, I allow for the self-efficacy measures to be
dedicated measurements of fggr and for the non-cognitive skill measures to load on both g and
Onc. Since the math test scores and GPA measures available in the ELS represent achievement,
rather than intelligence tests, I follow Kautz et al. (2014) and allow for achievement measures
to depend on math ability as well as on the factors encompassing non-cognitive abilities (Oy¢
and 953).17 This measurement system allows me to assess the extent to which students’ math
self-efficacy affects their observed non-cognitive skill measures and their math test scores.

As such, I specify the following linear model for the two self-efficacy measures:
SE;j = psej+ Bse;jXir + asg j0i sk + e sk, (7)

where SE; is the vector of observed math self-efficacy measures, psg ; captures the intercept of
self-efficacy measure j, X; 1 is a vector of exogenous control variables encompassing students’ so-
cioeconomic status and their individual characteristics (Heckman et al., 2006, 2018). e; si captures

a mean-zero error term, independent across observed measures j, X; r and Osg.

1Y, m.s capture wages for college continuers who switch majors and Y; m.c, indicate wages for dropouts.

15Since family, cultural and social factors shape the evolution of ability through childhood (Heckman, 2006), I
consider the components of 8 to be fixed by the time of college enrollment, but not fixed from birth.

ELS data includes a measure for English self-efficacy and a reading test score. Since there is only one measure
available per skill domain, a latent factor in these skill dimensions cannot be recovered (Carneiro et al., 2003).

17"The posited structure thus implies a triangular measurement system, in which the first set of measures depends
on one factor, the second set depends on the first factor along with an additional one, and so on.

13



I similarly posit a linear model for non-cognitive measures:

NCi = onck + ByverpXiT + asgibise +vnvorliNe + eiNCk (8)

Lastly, the linear model for math test scores and GPA is given by:

M1 = omg + BuiXior + aseili se +ynveabine + il m + € 9)

where M; encompasses both math test scores and GPA; e; »/ is an error term which is mutually
independent from all other error terms in the model, observables (X; ) and latent abilities (9).'8

In Appendix C, I show how the measurement system secures the identification of the distribu-
tion of @, the factor loadings (e, 7, n) and the variance of the error terms, following identification
arguments introduced in Carneiro et al. (2003),Hansen et al. (2004) and Williams (2020). While
triangular measurement systems like the one presented in equations (7)-(9) have previously assumed
orthogonality in the latent factors (Hansen et al., 2004), orthogonal factors would imply a strong
assumption in this context. By additionally restricting one of the loadings for the first factor (in
this case, Osp) for one measure in each block of test scores, I can allow for the latent factors to be

correlated.!?

Gender Differences in Latent Abilities. Equations (7)-(9) are estimated separately for males
and females, allowing for gender-specific parameters of the latent ability vector. Thus, for the factors
to be comparable across genders, a necessary assumption is that the latent factors recovered through
the measurement system presented above capture the same underlying traits for males and females.
The psychometrics literature refers to this assumption as configural invariance (Kline, 2015; Putnick
and Bornstein, 2016), which requires each factor to be associated with the same observed measures
across groups. Configural invariance is established when the observed measures exhibit the same
pattern of salient and non-salient factor loadings for men and women (Horn and McArdle, 1992).20

While configural invariance implies the latent factors capture the same trait for men and women,
additional assumptions are needed to identify gender differences in latent abilities. I illustrate the
approach using the measurement system for the self-efficacy measures. Omitting the dependence

on observables for notational simplicity, taking the expectation of equation (7) by gender yields:

E(SEZ{J') = é‘E,j + aéE,jl“’éE (10)
E(SE:) = ¢3p; + adp 18k (11)

18FOI‘ Ml, ch and SEJ', €i,M,l iR €i,NC,k iR €i,SE,j 1 Vi,s,E 1 Vi,s,Y 1 {€i,m 1 Ei,m,C 1 €i7m’FV m e M}

197 follow the evidence presented in Figure A.1 and assume that instrumental motivation is a dedicated measure
of Onc and that high school GPA does not directly depend on students’ math self-efficacy. However, since these
assumptions allow for the latent factors to be correlated, Osg can still affect these two observed measures indirectly.

20This assumption does not require the factor loadings to be the same for men and women, but rather that, for
instance, if the latent self-efficacy factor has a positive and significant loading on the first self-efficacy measure for
men, the corresponding factor for women loading need also be positive and significant.
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where E(HgE) = ,ugE and E(03y) = ply. Ase denotes the average difference in self-efficacy
(Asp = ply — ugE) Identifying both the gender-specific factor means and the intercepts from
the test score means requires additional assumptions. First, since latent factors have no location
of their own, we can normalize the mean of the latent factor for one group (pé p = 0 without loss

of generality). The difference in the test score means becomes:
E(SE[) ~ E(SE]}) = (98 — ¢p,) + ofp,Ase. (12)

Identifying Agg from equation (12) requires an additional assumption. In particular, the test score
intercepts must be equivalent for men and women (QO?E ;= cpé £, j). This assumption is referred to
as scalar invariance, and it requires that there are no consistent cross-group differences in how each
group performs/answers the observed measures.?! Under this assumption, group differences in the
observed measure means will thus reflect gender gaps in the factor means. Agg is thus directly
identified as: Agp = [E(SE™) — E(SE],)|/asp;.

The same identification argument follows for the identification of gender gaps in non-cognitive
skills. Normalizing /J,{VC = 0 implies the average gender gap in observed non-cognitive skill measure

k (equation (8)) is given by:
E(NCP}) — E(NCL) = (eNeg — ¢hen) + 08p,As8 + 1icpAne (13)

where A ¢ captures gender differences in the mean of . Scalar invariance implies that Ay¢ is
identified as the remaining parameters in equation (13) are already identified. The same identifi-
cation argument follows for math ability, as discussed in detail in Appendix D. Importantly, when
the configural and scalar invariance assumptions hold, group differences in the latent factors are

identified. The estimated factors can be thus compared across males and females (Gregorich, 2006).

3.3 Identification and Estimation

Model Identification. Carneiro et al. (2003), Heckman and Navarro (2007) and Heckman et al.
(2016) present the formal argument for identification of a multi-stage sequential choice model, akin
to the one presented in this paper. The distribution of latent ability 0 is identified through the mea-
surement system in equations (7)-(9), which requires for € to be orthogonal to X and e. While data
availability implies that all observed measures are available for 60% of the sample, Williams (2020)
shows that the distribution of the latent factors is identified as long as the variance-covariance
matrix of observed measures can be consistently estimated.?? Furthermore, Hansen et al. (2004)
Heckman et al. (2016) show that in the absence of exclusion restrictions, the joint distribution of

choices and potential outcomes can be non-parametrically identified as long as the support on the

21This assumption would not hold in the case in which one group has a tendency to systematically report higher
(or lower) answers to questions (Gregorich, 2006). Table A.1 had shown that gender differences in self-efficacy only
emerge in mathematics, making it unlikely that such tendencies could emerge in this context.

%Despite small differences in non-respondents’ observed characteristics (Table A.2), Piatek and Pinger (2016)
show the parameters in the choice equations should be equivalent for individuals with and without missing measures.

15



covariates in the choice equations (for instance, £, X;,, in equation (1)) matches the support of
the corresponding error terms (¢, = amb; + €;m). In this context, a conditional independence
assumption — which implies that initial major choices, subsequent educational choices and labor
market outcomes are independent conditional on all observed characteristics and latent ability (a

‘matching-on-unobservables assumption’) — secures model identification.

Model Implementation. The distribution of @ is identified non-parametrically (Freyberger,
2018), yet for computational convenience, I estimate the density of each unobserved ability compo-
nent f for each gender by using a mixture of three normal distributions with means (1, p2, 7, p3,1),
probabilities (p1 f,po.f,p3.f), With p1 s + po s+ p3 s = 1, and variances ((o1,f)?, (02,1)2, (03.7)?) as
follows:

0 ~p1.s N(pig, (01,0)%) + p2p N(pa,y, (02,0)) + psp N(us,p, (03,0)7)

To define the sample likelihood, I collect all exogenous controls in the educational choice and
outcome equations in the vector X; and the vector of observed test scores and non-cognitive skill
measures t € 7 in T;. Let ¥ be the vector of model parameters.?> While the model is identified
non-parametrically, I estimate the model using normal distributions for the idiosyncratic shocks
in the measurement system, educational choice equations, employment decision and in the wage

24

equation. Given the independence assumptions invoked above, the likelihood for a set of I

individuals is given by:

cly) = 1 /eH F(T | Xir, 0) [ | {P(Difl | X;,0) [f (Yis | Xisy, 0)P(Eis=1| Xisp, 0)]"

€L teT seS

[1-P(Eis=1]| Xisp,0)]' " }Dideg(.)}

where f(T3|-) is the conditional density function of test score ¢, f(Y5|-) is the conditional density
function of hourly wages for schooling level s and F'(0) represents the cumulative distribution func-
tion of the latent factors. I estimate the model using a Gibbs sampler as the Markov Chain Monte
Carlo (MCMC) algorithm, as in Hansen et al. (2004); Heckman et al. (2006).2% I generate 500

draws from the estimated posterior distribution of the model parameters and simulate 200 samples

23The measurement system, educational choice equations and labor market outcomes include students’ race, family
composition, parents’ education and household income as control variables (X;). Factor loadings in wage equations
with fewer than fifteen individuals — female STEM dropouts and male life science dropouts — are restricted to zero.

248pecifically, ei sg,; ~ N(0, a%Ej)Vj e J; einck ~ N(O, Jifck Wk € K; eim1 ~ N(O, U?\{l)Vl € L;[(giym ~
N(0,1);im,c ~ N(0,1);€i,m,r ~ N(0,1))Vm € M]; vis. g ~ N(0,1)Vs € S; vi sy ~ N(0,02y)Vs € S. The initial
major choice decision is estimated with a multinomial probit. Equations (2)-(4) are estimated using a probit model.

25Using a vector of initial parameters from the transition kernel, the Markov Chain is generated according to the
Gibbs sampler, whose limiting distribution is the posterior. Once convergence is achieved and after a burnin period of
100 draws, I keep every thirtieth draw to generate a sample of 500 draws from the posterior distribution of estimated
model parameters to compute the mean and the standard errors of the parameters of interest. Appendix E describes
the estimation algorithm in detail.
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where each simulated sample draws from the posterior of the estimated model parameters. Infer-
ence follows standard Bayesian arguments, as the Bernstein-von Mises theorem allows me to obtain

the associated standard errors from the standard deviations computed from these draws.

Goodness of Fit. Figures A.2-A.5 present evidence on the goodness of fit of the model. The model
accurately predicts major choices by gender (Figure A.2), and also matches the share of students
who complete their initial major (Figure A.3). Moreover, the model closely matches employment

rates and hourly wages for initial major completers across their parents’ income (Figures A.4-A.5).

4 Latent Skills and College Major Choices

4.1 Measurement System and Latent Skills

Figure 2: Variance Decomposition of Measurement System by Gender

Math Test | T ] ] Math Test | ] [
Math Test Il T ] Math Test Il ] [
GPA ] ] GPA ] ]
Self-Efficacy | | ] Self-Efficacy | | ]
Self-Efficacy 1| ] Self-Efficacy 1] ]
Action Control 1 Action Control | L
Control Expectation | [ Control Expectation | ]
Motivation | ] Motivation | ]

0 2 4 6 8 1 0 2 4 6 8 1
= Observables Math Skills Non-Cognitive Skills = Observables Math Skills Non-Cognitive Skills
= Self-Efficacy Error = Self-Efficacy Error

(a) Variance Decomposition: Women (b) Variance Decomposition: Men

Note: Figure 2 presents the contribution of observed characteristics, latent abilities () and the error term to the variance of the

observed skill measures considered in the model. The row Observables indicates the share of the variance of the measurement
variables explained by background characteristics. Each Ability bar indicates the share of the variance explained by each

component of the latent ability vector. The Error row represents the share of each test score variance explained by the
unobserved idiosyncratic error of the measurement system. The first panel presents results for women and the second panel
presents evidence for men.

Measurement System. To understand the relative contribution of students’ background char-
acteristics and their latent ability vector to each test score, I present a variance decomposition of
the measurement system in Figure 2. For both math test scores and high school grades, the share
explained by observable characteristics is close to 10 percent for both men and women. Observed
characteristics explain a much smaller share of the variance in students’ reported math self-efficacy
and their non-cognitive skill measures. On the other hand, this exercise confirms the critical role
of latent ability for explaining the variance in the observed measures. Across both math assess-
ments, students’ latent math ability explains between 52 and 73% of the variance in performance.
Meanwhile, a sizable share of the variance in observed self-efficacy measures is explained by their
latent self-efficacy. Lastly, 38-59% of the variance in students’ action control and motivation is

explained by On¢, yet an additional share is explained by their math self-efficacy. All in all, this
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evidence supports the argument that test scores cannot be equated with ability, as they are direct
functions of background characteristics and capture distinct components of the ability vector. The
same factor loadings are salient in each test score equation for females and males (Tables F.1-F.2),
and the share of the test score variance explained by each ability component is similar by gender,

lending support to the configural invariance assumption imposed in Section 3.2.

Figure 3: Marginal Distributions of Latent Ability Factors by Gender

© {E(0s:")=0.414 © | E(6,™)=0.002

~ HE(8yc™)=-0.037

Female =-----: Male ‘

(c) Density of On¢

Note: Figure 3 shows the marginal densities of the estimated latent math ability, math self-efficacy and non-cognitive skill
factors for men and women. The mean of the three latent factors is normalized to equal zero for women (see Section 3.2), and
the estimated mean for each latent factor for males is reported in each panel. The parameters of the latent factors are presented
in the first panel of Table A.6. For the three latent factors, Kolmogorov-Smirnov tests of equality between the male and female
distributions are rejected with p-values smaller than 0.001.

Latent Skills. Figure 3 presents kernel density estimates of the marginal distributions of the latent
ability factors by gender. The first panel presents the estimated distribution of latent math self-
efficacy for men and women. Following the identification arguments introduced in equations (10)-
(12), men outpace women in math self-efficacy by 0.41 standard deviations, on average. Moreover,
a Kolmogorov-Smirnov test of the equality of the male and female distributions is rejected with a p-
value smaller than 0.001. The next two panels present the corresponding distributions of students’
latent non-cognitive ability and their math ability, respectively. In this case, the average the latent
factors exhibit similar means for females and males, such that the average gender gap in these two

skill dimensions is not statistically significant (Table A.6). Altogether, the distributions of all three
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factors are different for men and women, yet the only statistically significant gender gap in average
skills emerges for students’ math self-efficacy.

I find a large and positive correlation across the three latent factors for men and women.
Most important to the analysis of sorting into STEM, however, is the correlation between the
students’ latent math ability and their self-efficacy. Sizable differences emerge in this dimension,
as the estimated correlation between 0y; and 0gp for men equals 0.488, far surpassing the 0.304
correlation for women (Table A.6). Importantly, under configural and scalar invariance, the latent
ability factors represent the same underlying traits for men and women. I can thus construct a
distribution for each ability factor that encompasses both men and women, allowing me to, for
instance, assess the share of women that belong to the top math self-efficacy decile of the joint
distribution.?® Since women’s math self-efficacy is substantially lower than that of men, a far lower
share of high math-skilled women have high math self-efficacy vis-a-vis their male counterparts.
Figure 4 presents the joint distribution of math ability and self-efficacy. While 43.3% of men in the
top math ability decile are also in the top math self-efficacy decile, just 13.9% of high-math-skilled
women reach the top fsg decile.?” Altogether, there is a large under-representation of high-skilled

women who exhibit strong confidence in their math abilities.?®

Figure 4: Joint Distribution of Latent Math Ability and Self-Efficacy by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) Joint Distribution of 5, and 0sg: Women (b) Joint Distribution of 5 and 0sg: Men

Note: Figure 4 presents the joint distribution of math ability and self-efficacy. The math ability and self-efficacy deciles are
given by the joint distribution encompassing men and women, presented in the third column of Panel A of Table A.6. The
figure documents the share of women (Panel A) and men (Panel B) pertaining to each joint decile of the two latent factor
distributions.

26The parameters of the combined distribution are presented in the third column of the first panel in Table A.6.

2TThese results hold even when examining the gender-specific distribution of math ability and self-efficacy (Figure
A.6), as a lower share of high math ability women are in the top decile of their own-gender’s Osg distribution.

28External influences may drive the prevalence of high-skilled women who lack confidence in their math ability.
Carlana (2019) finds that teachers’ gender stereotypes lower girls’ subsequent performance and self-confidence in
math, Lavy and Sand (2018) show similar evidence on the impact of teachers on female students’ test scores in Israel.
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4.2 Initial Major Choices

In light of the relative lack of high math ability women with high math self-efficacy, I examine
the relationship between students’ latent skills and their STEM enrollment decisions in Figure
5. The first panel shows that women who are in the top joint decile of the math ability and
self-efficacy distribution are far more likely to start in STEM (13.3 percent) than those in the
middle joint decile (3.9 percent). Self-efficacy plays a critical role in this decision: among women
in the top math ability decile, moving from the bottom self-efficacy decile to the top one increases
STEM participation rates by 7.8 percentage points. The second panel presents evidence for men,
which shows that 32.9% of men in the top decile of the math ability distribution enroll in STEM,
far outpacing women’s STEM enrollment rates. For men in the top 6,; decile, moving from the
bottom decile of fgg to the top one would almost double their STEM participation, from 19.4%
to 35.4%.%° For students in the top joint decile of the math ability and self-efficacy distribution, a
similar share of men and women enroll in life science and business majors (11-13%). The largest
gender differences emerge in health fields (10.6% for women, 2.9% for men) and in ‘Other’ majors,

where female participation equals 51.4% compared to 38.2% for men.

Figure 5: STEM Enrollment Rates by 6, and g by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Enrollment Rates: Women (b) STEM Enrollment Rates: Men

Note: Figure 5 shows the share of women and men who initially enroll a STEM degree. The share of STEM enrollees is
presented across each decile of the joint math ability and self-efficacy distribution, where the deciles are defined by the joint
distribution of ability encompassing both men and women, presented in the third column of Panel A of Table A.6. Figure A.8
presents corresponding evidence of STEM enrollment by the gender-specific joint deciles of math ability and self-efficacy.
These results thus show that despite similar sorting-into-STEM patterns for men and women, a
far higher share of high-math-ability men start in STEM majors vis-a-vis their female counterparts.
As such, these findings fit in with an extensive literature showing that STEM gaps are largely driven
by gender differences in preferences and tastes (Zafar, 2013; Wiswall and Zafar, 2015, 2018; Reuben

et al., 2017; Patnaik et al., 2020). At the same time, the evidence presented in Figure 5 shows that

Figure A.7 shows how students sort into majors based on their latent abilities. Panels (a)-(d) show that STEM
enrollees have the highest average math ability and self-efficacy, followed by their peers in life sciences and business.
Panels (e)-(f) show there are far smaller differences in students’ non-cognitive skills across majors. Table F.3 (Panel
A) presents the estimated factor loadings in the major choice equation, testing for gender differences in the loadings.
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increasing women’s math self-efficacy could increase their STEM participation.

4.3 Final Major Choices

While 62% of male STEM enrollees end up successfully completing a major in this field, this is the
case for just 55% of their female counterparts. In Figure 6, I further examine how math ability
and self-efficacy jointly affect the likelihood of STEM completion for students who started in these
majors. The first panel shows that both math ability and self-efficacy significantly strongly shape
the likelihood of STEM degree completion for women. For instance, moving from the middle to the
top decile of the marginal math ability distribution increases the likelihood of STEM completion
from 37.7% to 74.1%. Math self-efficacy is similarly important, as the corresponding increase from
the middle to the top decile of the 0gg distribution would boost completion rates from 47.3% to
68.1%. The joint skill distribution of math ability and self-eflicacy presents a similar story, as 78.5%
of women in the top joint decile graduate with a STEM degree, yet this share drops to below 54%
percent for those in the top math ability decile and in the bottom of the fgg distribution.

Figure 6: STEM Completion Rates Among Initial Enrollees: by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Completion Rates: Women (b) STEM Completion Rates: Men

Note: Figure 6 shows the share of women and men who complete a STEM degree after initially enrolling in a math-intensive
major. The share of conditional completers is presented across each decile of the joint math ability and self-efficacy distribution,
where the deciles are defined by the joint distribution of ability encompassing both men and women, presented in the third
column of Panel A of Table A.6. The first panel presents results for women. The second panel presents evidence for men. Figure
A.9 presents corresponding evidence of STEM completion by the gender-specific joint deciles of math ability and self-efficacy.

The second panel of Figure 6 shows that these patterns are strikingly different for men, for
whom self-efficacy plays a far smaller role in driving STEM degree completion. While 56% of
STEM enrollees in the middle decile of the 8gp distribution complete a degree after enrollment,
this share rises only slightly 67.7% top self-efficacy decile. Among men in the top decile of the math
ability distribution, self-efficacy similarly plays a limited role in shaping the likelihood of successfully
completing a STEM degree. This result shows the importance of considering how different margins

of ability differentially affect men and women’s progress through majors in college.?® Specifically,

30The findings presented in Figures 4-6 hold in an alternative version of the model presented in Section 3 which
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math self-efficacy plays a critical role for women’s exit from STEM, yet this margin has not received
much attention in the existing literature.?!

While the model presented in Section 3 does not directly account for the mechanisms through
which low math self-efficacy drives STEM dropout, women with low self-efficacy may leave STEM
upon receiving a low grade in a STEM-based class. In this context, Rask and Tiefenthaler (2008)
and Goldin (2015) have shown evidence pointing in this direction across two liberal arts colleges.
Women who earn low grades in introductory economics courses are more likely to dropout from
economics majors than their male counterparts. Kugler et al. (2021) similarly find that women
enrolled in math-intensive STEM fields are more likely to leave such majors in response to low
grades than their male peers. Ahn et al. (2022) show that harsh grading policies in STEM majors
may exacerbate the gender gap in these majors, as women place a higher value on grades than
men. Altogether, women’s lack of math self-efficacy may influence their large STEM dropout rates

through the grades received in introductory courses.

5 Returns to College Majors

5.1 Conceptual Framework

While STEM-promoting policies may create important non-pecuniary benefits, understanding the
wage returns associated with these majors is a first-order concern for quantifying the benefits
arising from such interventions. In this context, an extensive literature has estimated the returns
to completing different majors (Altonji, 1993; Rumberger and Thomas, 1993; Chevalier, 2011;
Webber, 2014; Jiang, 2021), yet the evidence regarding the gender-specific returns to enrolling in
different majors has been so far limited.?? I take advantage of the estimated model parameters and
the potential wages across initial majors defined in equation (6) to recover the returns to STEM
majors relative to various alternative options. The estimated returns to majors only capture early-
career wage outcomes, thus not recovering the lifecycle returns to majors (Altonji et al., 2016), nor
potential non-pecuniary benefits from such choices (Oreopoulos and Salvanes, 2011).

Let E[.] denote the expected value taken with respect to the distribution of (X, 6, ). The
average treatment effect (ATE) of enrolling in a STEM major (S) relative to any other major
(m € M) is given by:

ATES,, = //E[yfg Y |X = 2,0 = 6]dFy (x.0) for m, [ € {G) (14)

where Yl% — chfn captures the wage returns to starting in a STEM major relative to enrolling in

incorporates non-college-enrollees and directly models students’ choice of initial enrollment levels (Figures B.1-B.3).
31For STEM enrollees, non-cognitive ability does not lead to an increased likelihood of STEM completion (Figure
A.10). For non-STEM enrollees, math ability significantly reduces the likelihood of college dropout, and the other
two skill dimensions play a smaller role in shaping completion outcomes (Figure A.11). The last two panels of Table
F.3 present the estimated factor loadings in the college continuation and major completion equations.
32Tables F.4-F.5 present the estimated factor loadings in the employment and wage equations. The estimated
factor loadings are largely similar by gender, although a few statistically significant differences emerge.
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major m for student ¢ of gender G. The average returns to STEM enrollment are computed by
integrating out the latent skill distribution, yet may be heterogeneous across 6, as latent skills
may influence the likelihood of college graduation and may improve labor market productivity. I

examine the heterogeneous returns to STEM enrollment across the latent ability distribution in:
ATEgm(QMaQSEvQNC) = E[Yi,GS - Y;,%IHC =0c,0sE = 0sp,0nc = Oncl- (15)

5.2 Estimated Returns to Majors

In the first panel of Table 3, I present the estimated returns to enrolling in a STEM major for women
vis-a-vis the other four majors considered in the analysis. Using the simulated parameters from the
model, the second column of Table 3 shows that the estimated ATE of STEM enrollment relative
to the life sciences equals 11.5%. The estimated returns to STEM exhibit further heterogeneity
depending on which major they are compared against. For instance, while the average returns to
STEM enrollment relative to starting in ‘Other’ majors are small, the returns relative to business
majors are large and significant, equaling -11.4%. The returns to enrolling in STEM compared
to a health-related field are even smaller, reaching -24%, yet these returns are calculated in the
early-career when health-based graduates are among the highest-earners, a pattern which does not
remain through the lifecycle (see Figure A.12). The estimated ATE of STEM enrollment relative
to the other majors is lower when compared to average raw wage gaps across fields. This pattern is
driven by the fact that women enrolled in STEM outpace their peers in other majors in both their
latent math ability and self-efficacy.

The first row of the second panel of Table 3 presents the corresponding returns to STEM
enrollment for men. Enrolling in STEM delivers positive average returns relative to majors in the
life sciences, business and ‘Other’ fields, while yielding negative returns compared to a health-based
field. In fact, the estimated ATE of STEM enrollment for men exceeds 22% when compared to
the life sciences or other majors, fitting in with previous work (Eide, 1994; Chevalier, 2011; Jiang,
2021) which had previously found higher returns to STEM majors for men than for women.

The estimated returns may further differ for students who actually enrolled in STEM (Dfs =1)
— for whom the relevant returns are captured by the treatment on the treated (TT) parameter —
and those who instead enrolled in major m (Dfm = 1), whose relevant returns to STEM enrollment
are given by the treatment on the untreated parameter (TUT). The first panel of Table 3 shows
the TT and TUT parameters for women are largely similar in magnitude to the estimated ATEs
presented above. For men, the estimated TT to STEM enrollment is larger than the corresponding
ATE across all alternative majors, except with respect to health.??

While the returns to majors discussed so far are computed by integrating out the latent skill
distribution, these may be heterogeneous across students’ abilities. Table 3 further presents the

returns to STEM enrollment for students above and below the math ability median, showing that

33Table A.7 decomposes wage differences across majors into the estimated ATE, selection bias and ‘sorting gains,’
which capture the difference in the TT and ATE (Heckman et al., 2018). Women are positively selected into STEM,
yet selection bias plays a smaller role for men. For both genders, the sorting gains parameter is small in magnitude.
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the returns to STEM for high-skilled men and women are generally larger than the corresponding
average treatment effects.?® These findings thus fit in with a higher productivity of math ability for
male and female students in math-intensive degrees (Arcidiacono, 2004; Humphries et al., 2019).
At the same time, previous work has found a low elasticity of college major choices to expected
earnings (Berger, 1988; Beffy et al., 2012; Wiswall and Zafar, 2015; Blom et al., 2021), and since
preferences play a key role in shaping major choices (Zafar, 2013; Wiswall and Zafar, 2015, 2018),

high-skilled women may not act upon the positive returns from STEM majors.

Table 3: Estimated Returns to STEM v. Alternative Majors by Gender

Panel A. Women

Estimate Life Sciences Business Health Other
ATE 0.115 -0.114 -0.239 -0.004
0.112,0.118]  [-0.117,-0.112]  [-0.241,-0.236]  [-0.007,-0.002]
ATE (High 6yy) 0.154 -0.070 -0.243 0.041
[0.150,0.158]  [-0.073,-0.066] [-0.247,-0.240]  [0.038,0.044]
ATE (Low 6y) 0.067 -0.168 -0.233 -0.059
[0.062,0.071] [-0.172,-0.164] [-0.237,-0.229] [-0.063,-0.056]
TT 0.111 -0.103 -0.244 -0.002
(0.098,0.124]  [-0.114,-0.091] [-0.256,-0.232]  [-0.014,0.009)]
TUT 0.091 -0.083 -0.223 -0.007
[0.080,0.102] [-0.091,-0.076] [-0.230,-0.217] [-0.010,-0.004]
Panel B. Men
Estimate Life Sciences Business Health Other
ATE 0.227 0.071 -0.111 0.229
(0.224,0.230]  [0.068,0.073]  [-0.115,-0.107]  [0.227,0.232]
ATE (High 65/) 0.294 0.134 -0.131 0.261
[0.290,0.298]  [0.130,0.137]  [-0.136,-0.126]  [0.258,0.264]
ATE (Low 6y) 0.147 -0.004 -0.087 0.191
(0.143,0.152]  [-0.008,0.000] [-0.094,-0.081]  [0.187,0.195]
TT 0.272 0.110 -0.128 0.241
[0.266,0.279]  [0.104,0.115]  [-0.137,-0.119]  [0.235,0.246]
TUT 0.241 0.065 -0.096 0.224
0.229,0.252]  [0.059,0.071]  [-0.118,-0.074]  [0.221,0.228]

Notes: Table 3 presents the estimated returns to STEM enrollment relative to different majors for women (Panel A) and for men
(Panel B). The estimated average treatment effect is defined in equation (14). ATE (High 65) and ATE (Low 6j57) present the
estimated ATE to STEM majors for students above and below the 63, median. The T'T and TUT parameters encompass the
returns to individuals who actually enrolled in STEM and to those who enrolled in the alternative major under consideration,
respectively. 95% confidence intervals are presented in brackets.

Returns Relative to Next-Best Option. While the results presented so far indicate that the
returns to STEM are heterogeneous depending on the major they are compared against, students
may only weigh the costs and benefits of their preferred and next-best majors, rather than consid-
ering all available majors. As such, the returns presented above may not represent an actionable
margin for students (Rodriguez et al., 2016). To this end, I follow Heckman et al. (2008) and

Kirkeboen et al. (2016) to instead examine the returns to STEM majors for students who enrolled

34Figures A.13-A.14 present heterogeneous returns to STEM majors for women and men across the 8, distribution.
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in such majors vis-a-vis their next-best option (defined in Section 3.1) as follows:
TTS,]' = //E[Y;,S — YVZ‘,J’|X = 33‘,0 = Q, Diﬂg = 1,Ni,j = 1]dFX79(x,Q, Di,S = 17Ni,j = 1) (16)

where Y; ¢ — Y; ; recovers the returns to STEM enrollment compared to major j. T7Tg; denotes
the returns to STEM majors for students enrolled in STEM (D; s = 1) whose second-best option
is major j (N;; =1).%

Figure 7: Heterogeneous Returns to STEM Enrollment Compared to Second-Best Option
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Note: The first panel of Figure 7 presents heterogeneous returns to STEM enrollment for women who actually enrolled in STEM
relative to the next-best major (defined in equation (16)) across the 6 distribution. The second panel presents corresponding
returns for men. The third and fourth panels present the estimated TUT parameter which, for students enrolled in other
majors, recovers the returns to instead enrolling in STEM for men and women, respectively. Dashed lines in each panel denote
the average TT/TUT for each gender. Shaded areas denote 95% confidence intervals.

In Figure 7, I present the estimated returns to STEM relative to students’ next-best options.
The dashed line in the first panel shows that for women in STEM, enrolling in their next-best
option would have led to an average wage gain of 4.5%. At the same time, these returns are highly
heterogeneous across the 0, distribution — 1T ; is positive and significant for women in the top
decile of the math ability distribution, denoting that these students would benefit from remaining

in STEM. For men, meanwhile, the estimated returns indicate that remaining enrolled in STEM

35For both female and male STEM enrollees, enrolling in a major in the ‘Other’ grouping would have been the
preferred alternative for over half of the sample (Table A.8).
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instead of their next-best major would have been beneficial for all students, with increasing returns
across the math ability distribution, as well.

The corresponding treatment-on-the-untreated parameter (7'UTs ;) captures whether students
enrolled in other majors m whose next best-major was in STEM would have enjoyed positive
benefits from alternatively enrolling in STEM. The third panel of Figure 7 presents the estimated
TUTs,; parameter, showing that for women enrolled in other majors, enrolling in their next-best
choice (STEM) would have, on average, resulted in average wage losses of 3.9%. However, this
parameter becomes positive for female students in the top quintile of the math ability distribution,

fitting in with the positive returns to STEM enrollment for high math ability women shown above.

5.3 Conditional Returns to Degree Completion

While STEM enrollment for high-math-ability women is largely positive, an open question remains
as to whether remaining in these majors through completion would be necessarily deliver positive
wage returns. I define the conditional returns to completing initial major m relative to switching

to a different major, or relative to dropping out of college altogether as follows:

{ATE,, rs|D =m} = //E[Yi,m,F ~Yims| X =2,0 =80,D =m|dFx g|p—(,0) (17)

(ATE pco|D = m) = / / ElYip — Yimcy| X = 2,0 = 8,D = mldFx gp_n(r,0)  (18)

where for students initially enrolled in major m, ATE,, ps|{D = m} captures the returns to
completing that major relative to switching to a different degree and AT E,, pc,|{D = m} denotes

the returns to initial-major completion compared to dropping out of college altogether.
Figure 8: Heterogeneous Returns to STEM Completion for Female STEM Enrollees

6
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(a) Returns v. Switching (b) Returns v. Dropout

Note: The first panel of Figure 8 presents heterogeneous returns to STEM completion relative to switching to a different major
(equation (17)) for women. The second panel presents corresponding evidence relative to dropping out of college altogether
(equation (18)). The dashed lines depict the corresponding average treatment effect in each panel. Shaded areas denote 95%
confidence intervals.

In the first and second panel of Figure 8, I present the estimated returns to completing a
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STEM degree relative to switching to a different major and to dropping out of college, respectively.
The average returns to STEM completion vis-a-vis switching are large and significant, reaching
31.5%. Similar to the returns to STEM enrollment, these returns are also increasing across the 6,
distribution, denoting that high-ability women would have the most to gain by completing these
degrees. The returns relative to college dropout are larger (41%) and increasing in the math ability
distribution. Men would similarly enjoy sizable returns for men from completing STEM degrees
both relative to switching to a different major (36%) and to dropping out of college altogether (65%)
(Figure A.15). Altogether, these findings indicate that well-targeted policies aimed at increasing

STEM completion among female enrollees would substantially improve their early-career wages.

6 Policy Simulation: Math Self-Efficacy Increase

6.1 Simulated Intervention

Colleges across the country have implemented policies aimed at boosting students’ STEM partici-
pation rates, ranging from mentoring initiatives, STEM-program exposure, increased lab experience
and summer preparation programs (Olson and Riordan, 2012). In this context, previous work has
shown that non-cognitive skills are malleable through adolescence (Kautz et al., 2014), and the
psychology literature has found different strategies that can boost students’ self-efficacy (Betz and
Schifano, 2000; Siegle and McCoach, 2007; Cordero et al., 2010).3¢ Since this literature has not
been precise about the feasibility of interventions of varying magnitudes, I examine how a program
which would boost women’s math self-efficacy by 0.25 standard deviations — smaller than the
average gender gap in self-efficacy — would affect their STEM participation rates. I also assess the
effect of larger and smaller increases in self-efficacy. In light of low enrollment rates among high-
math-ability women, I focus the simulated intervention on students above the math ability median.
The intervention is presented for illustrative purposes, as the sustained self-efficacy increases of this

magnitude may not necessarily be achieved in a large scale.

Conceptual Framework. To fix ideas, I follow the potential outcomes framework to capture the
effect of the simulated intervention on any outcome variable of interest Y. This framework allows
me to separate the impact of STEM-promoting policies on students affected by the intervention
(compliers) as well as those unaffected: STEM-always-takers and STEM-never-takers. The effect

of any policy p’ on outcome Y is given by:

AY = ElY;(p)) - V] =
ElYi(p) =YiDis(p') =1,Ds =1 x  P[Dis(p)) =1,Dis =1 +
STEM Enrollment Always—Takers
ElY;(p') = Yi|Dis(p') = 1,Dis = 0] x P[D;s(p') =1,D;s =0] +

STEM Enrollment Compliers

36 Alan et al. (2019) show that a classroom-based early childhood intervention can foster students’ grit.
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E[}/z(p/) - Yi|Di,s(p/) = 07 Di,s = 0] X P[Di,s(p/) = 07 Di,s = 0] (19)

STEM Enrollment Never—Takers

where D; ¢ is a dummy variable which equals one for student i enrolled in STEM. Equation (19)
indicates that the aggregate effect of policy p’ on outcome variable Y is given by the linear combina-
tion of the effect on STEM always-takers — students who enroll in STEM at baseline and under p/,
compliers, the students changing the enrollment decision due to the policy, and never-takers, who

never enroll in STEM.37 The effect of these interventions may further vary across the 6 distribution.

6.2 Impacts on STEM Participation

I first examine the effect of the self-efficacy intervention on women’s STEM enrollment rates. The
first panel of Figure 9 shows the share of high math ability women who would enroll in STEM upon
an increase of 0.25 standard deviations in their self-efficacy. The simulated intervention would
increase high 6;; women’s STEM enrollment rates from 6.6% up to 7.3%, representing a 11%
increase relative to baseline participation rates. Meanwhile, the self-efficacy increase would lead to
increased STEM enrollment for women in the top math ability decile by one full percentage point,
from 10.9% to 11.9%. Students would be primarily drawn away from majors in the humanities,

social sciences and education into math-intensive STEM fields (Figure A.16).
Figure 9: Estimated Impacts of Intervention on STEM Participation
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Note: The first panel of Figure 9 presents the estimated impacts of the simulated self-efficacy intervention on STEM enrollment
rates for women. The figure presents heterogeneous enrollment rates across different percentiles of the math ability distribution,
both at baseline (green line) and under the policy intervention (purple line). The second panel presents the corresponding
impacts of the simulated intervention on STEM completion rates. Shaded areas denote 95% confidence intervals.

Furthermore, the second panel of Figure 9 shows the simulated intervention would boost average
STEM completion rates for women above the math ability median from 4% to 4.6%, or 15%
of baseline completion rates. For women in the top math ability decile, the intervention would
similarly boost graduation rates by a full percentage point, up to 9.1%. The overall effect on STEM

completion rates emerges through two channels. First, 61.8% of ‘compliers’ would successfully

3TResponse types are given by students’ initial major decisions. Compliers enroll in STEM as in policy p’, but not
under baseline policy p. Sorting-into-STEM patterns by math self-efficacy implies there are no defiers (Figure A.7).
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complete a STEM degree. Moreover, among students originally enrolled in STEM — ‘always-
takers’ — the simulated policy would increase their completion rates from 60% to 63.4% (Figure
A.17), fitting in with the importance of self-efficacy in STEM completion documented earlier. I
assess the robustness of these findings by estimating the effects of self-efficacy increases ranging
from 0.05 to 0.5 standard deviations. Figure A.18 shows that larger-sized interventions having an

positive linear impact on STEM participation rates.

6.3 Impacts on Labor Market Outcomes

In this context, a self-efficacy boost could affect labor market outcomes both through an increased
likelihood of STEM completion but also through increased labor market productivity (Heckman
et al., 2006). For instance, higher math self-efficacy could lead students in math-intensive jobs to

improve their performance on math-related tasks and thus earn higher wages.

Figure 10: Estimated Impacts of Policy Intervention on Hourly Wages
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Note: Figure 10 presents the estimated impacts of the simulated self-efficacy intervention on hourly wages for women above the
median of the math ability distribution. Shaded areas denote 95% confidence intervals.

Altogether, the simulated intervention would boost average hourly wages by 1.2%, with largely
homogeneous effects across the math ability distribution (Figure 10). The overall effect is comprised
of heterogeneous impacts across the different response types (Figure A.19), yielding small positive
effects for always-takers — driven through the productivity of self-efficacy for STEM enrollees
— along with increasing impacts across the math ability distribution for policy compliers and a
small positive impact on never-takers, explained by the wage returns to self-efficacy for non-STEM
majors. These findings thus suggest that well-targeted skill development policies geared towards
improving women’s math self-efficacy could lead to increases in STEM participation while improving

early-career labor market outcomes.?®

38Using High School Longitudinal Study of 2009 data (Ingels et al., 2013), I show that self-efficacy is self-productive
over time (Table A.9), suggesting that early-life interventions fostering math self-efficacy could have larger sustained
effects on students’ self-efficacy.
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7 Conclusion

In recent years, women’s under-representation in STEM has received increased attention in both the
economics literature and in the policy discussion. In this paper, I have examined the interaction
between multidimensional skills and college major choices, with the goal of understanding the
factors driving women’s participation in STEM majors. While previous work has focused on the
importance of test scores and preferences as drivers of major choices, the importance of other skill
dimensions has so far received scant attention in the existing literature.

To this end, I have introduced an empirical strategy which allows me to account for the fact
that test scores measure latent skills with error and that skills are multiple in nature. I have thus
been able to separately identify latent non-cognitive ability and mathematical self-efficacy. I have
shown there is a relative shortfall of high-skilled women who are confident in their math abilities.
This finding is relevant to the analysis of STEM participation, as students sort into these majors
on both their math ability and their self-efficacy, as well. Furthermore, self-efficacy has a sizable
effect in explaining female dropout from math-intensive fields, yet this pattern is largely muted
for men. The shortfall of high-achieving women who are confident in their math skills reduces
their participation in STEM majors. As such, future research should analyze the drivers of gender
differences in mathematical self-efficacy given its importance in shaping gender gaps in STEM.

I have further shown that high math ability women would enjoy positive returns from STEM
enrollment in the early career. Since math self-efficacy increases are associated with higher STEM
participation rates for women, improving women’s self-efficacy in mathematics could lead to im-
proved early-career labor market outcomes. Further work on this front is thus needed to understand

the types of interventions that can lead to sustained improvements in women’s math self-efficacy.
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Appendix

A Additional Tables and Figures

Table A.1: Gender Differences in Prevalence of ‘Almost Always’ Responses to Math and English

Self-Efficacy Questions, ELS 2002

Panel A: Full Sample

Math English
Male Female Male Female
Question (1) (2) (3) (4)
Confident I can do an excellent job in tests 0.244 0.172%**  0.238 0.266%**
Confident T can understand most difficult material in texts 0.185 0.106*** 0.183 0.188
Confident I can understand most complex material in class 0.218 0.147***  0.210 0.218
Confident I can do an excellent job on my assignments 0.245 0.198%*%*F (0.248 (.289%**
Confident I can master the skills being taught in my class ~ 0.258 0.204*** (0.219 (0.249%**
Observations 5,404 5,987 5,188 5,763
Panel B: College Enrollees
Math English
Male Female Male Female
Question (1) (2) (3) (4)
Confident I can do an excellent job in tests 0.356  0.231*F* 0.323 0.316
Confident I can understand most difficult material in texts 0.275 0.147*%%* 0.236  0.228
Confident I can understand most complex material in class 0.322 0.187*** 0.285  0.267
Confident I can do an excellent job on my assignments 0.367 0.264*** 0.335 0.359
Confident I can master the skills being taught in my class ~ 0.372 0.275%** 0.297  0.309
Observations 1,904 2,545 1,830 2,468

Notes: Table A.1 presents the share of students in the ELS sample who respond ‘almost always’ to the questions included above.
The first panel includes the full sample of students who answer these questions in the baseline survey, whereas the second panel
restricts the analysis to those who eventually enroll in four-year college by age 20. In each panel, the first two columns present
the responses to the math-related questions, and the last two columns present evidence for English-related questions. The stars
in the even columns indicate the gender difference in the share who respond ‘almost always’ following from a two-sided t-test.

* p <0.10, ** p < 0.05, and *** p < 0.01.
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Table A.2: Determinants of Observed Test Scores

BY Math F1 Math GPA BY SE F1SE Control Motivation  Action
1) (2) 3) (4) (5) (6) (7) (8)

Both Parents 0.000 0.011 0.001  -0.002  0.046*  0.006 0.001 -0.002
(0.002)  (0.011)  (0.012)  (0.020)  (0.020)  (0.020)  (0.020)  (0.020)
Both Parents x Male -0.000 0.019 0013  0.000  -0.044  -0.016 0.000 0.005
(0.003)  (0.016)  (0.018)  (0.032)  (0.029) (0.032)  (0.032)  (0.033)
Parental Education 0.000 0.001  -0.001  0.004  -0.002  0.004 0.004 0.005*
(0.000)  (0.001)  (0.001)  (0.003)  (0.002) (0.003)  (0.003)  (0.003)
Parental Education x Male  0.000 -0.001  -0.001 -0.006**  0.003  -0.005"*  -0.006"*  -0.006***
(0.000)  (0.001)  (0.001)  (0.002)  (0.002) (0.002)  (0.002)  (0.002)
HH Income 0.001 0.009  -0.014  0.002  0.002  -0.003 0.005 0.008
(0.001)  (0.009)  (0.010)  (0.017)  (0.016) (0.018)  (0.017)  (0.018)
HH Income x Male -0.002  -0.002  0.032*  0.058**  0.022  0.062*  0.058*  0.066"*
(0.002)  (0.013)  (0.016)  (0.029)  (0.025) (0.029)  (0.029)  (0.030)
Constant 0.997**  0.940"*  0.962°* 0.761*** 0.843"* 0.750***  0.753"*  0.732"*
(0.004)  (0.019)  (0.023)  (0.044)  (0.037) (0.044)  (0.043)  (0.044)
Observations 4,599 4599 4599 4599 4599 4,599 4,599 4,599
R? 0.001 0.004 0002  0.007  0.003  0.006 0.006 0.007

Note: Table A.2 presents evidence from a linear regression on the drivers of having available test scores, observed self-efficacy
and non-cognitive skill measures. Column headers refer to the skill measures used in the analysis. BY Math and F1 Math refer
to the baseline and follow-up math exams, respectively. GPA indicates students’ high school GPA. BY SE and F1 SE refer to
students’ baseline and follow-up math self-efficacy, respectively. Lastly, Control, Motivation and Action refer to students’ action
control, control expectation and their instrumental motivation in the baseline survey, respectively. Robust standard errors in
parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.3: Sample Restrictions

Sample Restriction Sample Size Women Men
Full Sample 16,197 8,107 8,090
Math Test Takers 16,146 8,084 8,062
Self-Efficacy Measures 13,466 6,885 6,581
Four-Year College Enrollment 5,188 2,903 2,285
Missing Educational Attainment 4,984 2,806 2,178
Missing Labor Market Outcomes 4,599 2,615 1,984

Note: Table A.3 shows the sample restrictions imposed on the baseline ELS sample result in the final sample used in the paper.

A3



Table A.4: Determinants of Initial Major Choice: Multinomial Logit

Panel A. Determinants of Initial Major: Women

STEM  Life Sciences Business Health

(1) 2) 3) (4)

Both Parents -0.008 0.018 -0.017 0.012
(0.011) (0.015) (0.016) (0.019)

Parental Education 0.004 0.003 -0.005 -0.006
(0.002) (0.002) (0.003) (0.003)

HH Income 0.004 -0.016 -0.003 -0.006
(0.010) (0.012) (0.014) (0.017)

Underrepresented Minority 0.027* 0.025 -0.017 -0.009
(0.011) (0.013) (0.018) (0.019)
Baseline Math Exam 0.016* 0.012* -0.010  -0.026***
(0.007) (0.006) (0.008) (0.008)

HS GPA 0.000 0.014 -0.004 0.000
(0.006) (0.007) (0.008) (0.008)

Baseline Math Self-Efficacy  0.017*** 0.008 0.028*** 0.010
(0.005) (0.006) (0.008) (0.009)

Non-Cognitive Skills (PCA)  -0.003 0.013* -0.018* -0.001
(0.005) (0.007) (0.008) (0.010)

Panel B. Determinants of Initial Major: Men

STEM Life Sciences Business Health

(1) (2) (3) (4)
Both Parents -0.015 -0.011 0.038 0.018
(0.024) (0.015) (0.026) (0.013)
Parental Education -0.002 0.007* -0.002 -0.002
(0.004) (0.003) (0.004) (0.002)
HH Income -0.005 -0.012 0.046* -0.020*
(0.022) (0.013) (0.021) (0.010)
Underrepresented Minority ~ 0.075** 0.025 0.008 -0.012
(0.024) (0.015) (0.025) (0.013)
Baseline Math Exam 0.043*** 0.011 -0.015  -0.016***
(0.011) (0.006) (0.009) (0.005)
HS GPA 0.036"** 0.022** -0.010 0.012*
(0.011) (0.008) (0.009) (0.005)
Baseline Math Self-Efficacy  0.074*** -0.001 -0.011 -0.003
(0.013) (0.008) (0.013) (0.005)
Non-Cognitive Skills (PCA) -0.034** 0.005 0.011 0.008

(0.013) (0.007) (0.012)  (0.005)

Note: Table A.4 presents the estimated marginal effects from a multinomial logit examining the determinants of initial major
choices for female (Panel A) and male (Panel B) students in the final ELS sample. The omitted category is enrollment in a
major in the ‘Other’ category. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

A4



Table A.5: Determinants of Initial Major Choice: Multinomial Logit with Reading Test Score

Panel A. Determinants of Initial Major: Women

STEM  Life Sciences DBusiness  Health
(1) (2) 3) (4)

Both Parents -0.008 0.018 -0.017 0.012
(0.011) (0.015) (0.016) (0.019)
Parental Education 0.004** 0.003 -0.004 -0.005
(0.002) (0.002) (0.003) (0.003)
HH Income 0.005 -0.016 0.001 -0.004
(0.011) (0.012) (0.014)  (0.017)
Underrepresented Minority — 0.027** 0.025* -0.021 -0.011
(0.011) (0.013) (0.018) (0.019)
Baseline Math Exam 0.020%** 0.013* 0.014 -0.010
(0.007) (0.008) (0.009) (0.010)
HS GPA 0.001 0.014* -0.000 0.003
(0.006) (0.007) (0.008) (0.008)
Baseline Math Self-Efficacy  0.016*** 0.008 0.021** 0.005
(0.005) (0.006) (0.008) (0.010)
Non-Cognitive Skills (PCA)  -0.002 0.014** -0.014 0.001
(0.005) (0.007) (0.008) (0.010)
Baseline Reading Exam -0.007 -0.003 -0.040"*  -0.027***
(0.006) (0.008) (0.009) (0.009)

Panel B. Determinants of Initial Major: Men

STEM  Life Sciences Business  Health
(1) (2) 3) (4)

Both Parents -0.015 -0.011 0.038 0.018
(0.024) (0.015) (0.026) (0.013)
Parental Education -0.000 0.007** -0.001 -0.002
(0.004) (0.003) (0.004) (0.002)
HH Income 0.001 -0.013 0.048*  -0.020**
(0.022) (0.014) (0.022)  (0.010)
Underrepresented Minority — 0.073*** 0.025 0.007 -0.012
(0.024) (0.015) (0.025) (0.013)
Baseline Math Exam 0.068*** 0.011 0.003 -0.015%**
(0.013) (0.007) (0.012) (0.006)
HS GPA 0.040*** 0.022*** -0.007 0.012**
(0.011) (0.008) (0.009) (0.005)
Baseline Math Self-Efficacy  0.071*** -0.001 -0.016 -0.003
(0.013) (0.008) (0.013) (0.005)
Non-Cognitive Skills (PCA) -0.032** 0.005 0.014 0.009*
(0.013) (0.007) (0.012) (0.005)
Baseline Reading Exam -0.044*** 0.001 -0.029**  -0.001
(0.011) (0.006) (0.011) (0.005)

Note: Table A.5 presents the estimated marginal effects from a multinomial logit examining the determinants of initial major
choices for female (Panel A) and male (Panel B) students in the final ELS sample. It follows the results presented in Table A.4
while including baseline reading test scores as a control variable. The omitted category is enrollment in a major in the ‘Other’
category. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.6: Estimated Parameters of the Latent Factor Distributions

Panel A. Factor Means

Male  Female Joint
n @ (3)
O 0.002 0.002 0.002
(0.810) (0.722) (0.761)
[0.854]
Osp  0.414 0.003 0.180
(0.946) (0.983) (0.988)
[0.000]
Onc  -0.037  -0.000 -0.016
(0.438) (0.591) (0.530)
[0.476]
Panel B. Correlation Matrix: Women
O Osk Onc
O 1.000
Osp  0.304 1.000
Onc  0.135 0.444 1.000
Panel C. Correlation Matrix: Men
Ot Osk Onc
O 1.000
Osg  0.488 1.000
Onc  0.241 0.499 1.000

Note: The first panel of Table A.6 displays the mean, standard deviation for each latent factor for men (column 1) and women
(column 2). The third column presents the corresponding mean and standard deviation for the distribution a latent factor that
encompasses the underlying gender-specific distributions. The values in brackets present the p-values from a test of equality
of the gender-specific factor means. Panels B and C present the correlation matrix for the latent factors for women and men,
respectively.
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Table A.7: Decomposition of Estimated Returns to STEM v. Alternative Majors by Gender

Panel A. Women

Estimate Life Sciences Business Health Other
(1) (2) (3) (4)
Observed Differences 0.124 -0.031 -0.151 0.058
0.112,0.136]  [-0.041,-0.022] [-0.160,-0.142]  [0.052,0.065]
Pairwise ATE 0.099 -0.089 -0.229 -0.006
[0.091,0.107]  [-0.095,-0.083] [-0.235,-0.223] [-0.009,-0.003]
Selection Bias 0.013 0.071 0.093 0.061
[0.002,0.025] [0.063,0.079] [0.084,0.102] [0.054,0.067]
Sorting Gains 0.012 -0.014 -0.015 0.004

[-0.004,0.027] [-0.027,0.000] [-0.029,-0.002] [-0.008,0.016]
Panel B. Men

Estimate Life Sciences Business Health Other
(1) (2) (3) (4)
Observed Differences 0.235 0.086 -0.054 0.255
[0.226,0.245] [0.080,0.092]  [-0.067,-0.041]  [0.250,0.259]
Pairwise ATE 0.264 0.088 -0.123 0.228
[0.258,0.270] [0.084,0.092] [-0.132,-0.114]  [0.226,0.231]
Selection Bias -0.037 -0.023 0.074 0.014
[-0.048,-0.026] [-0.029,-0.018]  [0.053,0.095] [0.010,0.018]
Sorting Gains 0.008 0.022 -0.005 0.012

[-0.001,0.017]  [0.015,0.029]  [-0.018,0.008]  [0.006,0.019]

Note: Table A.7 presents the decomposition introduced in Heckman et al. (2018) of observed differences across STEM majors
and all other alternative majors into pairwise average treatment effects — which capture differences in potential wages for
individuals enrolled in either STEM or in respective major k —, selection bias and sorting gains. All parameters follow from the
estimated model. The first panel presents evidence for women and the second panel presents results for men. 95% confidence
intervals are presented in brackets.
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Table A.8: Distribution of First- and Second-Best Choices (in %) by Gender

Panel A. Women
First Best STEM Life Sciences Business Health Other

Second Best (1) (2) (3) (4) (5)
STEM — 10.2 8.6 7.9 13.7
Life Sciences 13.7 — 11.9 12.0 20.0
Business 16.9 16.4 — 19.0 29.8
Health 18.3 194 22.0 — 36.4
Other 51.0 54.0 57.5 61.1 —
Total 100 100 100 100 100

Panel B. Men
First Best STEM Life Sciences Business Health Other

Second Best (1) (2) (3) (4) (5)
STEM — 25.8 24.1 20.0 34.5
Life Sciences  13.9 — 11.1 10.3 16.4
Business 24.5 21.1 — 22.0 37.6
Health 7.2 6.6 7.7 — 11.5
Other 54.5 46.5 57.1 47.6 —
Total 100 100 100 100 100

Note: For individuals enrolled in different majors (presented in columns (1)-(5)), Table A.8 documents the share of students
with different second best options. The first panel presents evidence for women enrolled across the five major groupings in the
model (STEM, life sciences, business, health and ‘Other’) and the second panel shows evidence for men.

Table A.9: The Process of Math Self-Efficacy Development

Full Sample  Males  Females

(1) 2 @
Math Test Score 0.120*** 0.142***  0.095***
(0.010) (0.014)  (0.015)
Math Self-Efficacy 0.206*** 0.223***  0.190***
(0.012) (0.016)  (0.017)
Math Identity 0.132%** 0.133**  0.131***
(0.012) (0.016)  (0.017)

Math Interest 0.037** 0.034* 0.041*
(0.011) (0.015)  (0.017)

Math Utility 0.017 0.014 0.016
(0.010) (0.013)  (0.014)

Background Characteristics Yes Yes Yes
R? 0.1657 0.1841  0.1286
Observations 12,645 6,219 6,426

Source: High School Longitudinal Study of 2009 (HSLS). Note: Table A.9 uses HSLS data from the baseline and first-follow
up survey rounds to examine how baseline characteristics (math self-efficacy, identity, interest, utility and exam performance)
influence students’ math self-efficacy at follow-up in the following equation: SE; ;11 = a1SE; 1 +a2lD; 1 +a3INT; 1 +aaU; ¢+
as5Ti ¢ +nXi ¢ +vi¢. All variables are standardized within the sample. The first column presents evidence for the full sample.
The second and third columns focus on the male and female samples, respectively. Robust standard errors in parenthesis. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A.1: Exploratory Factor Analysis: Non-Cognitive Skill Measures
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Note: Figure A.1 presents the estimated loadings from exploratory factor analysis of the three non-cognitive skill measures
available in the ELS along with the baseline and follow-up math self-efficacy measures with orthogonal factors. The solid
horizontal and dashed vertical lines are placed at 0.30, as loadings with an absolute value above 0.30 are considered significant
(Sheskin, 2020).
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Figure A.2: Goodness of Fit: Initial Majors
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Note: Figure A.2 compares the observed share of students initially enrolled in different majors to the model-based estimated
shares of initial major enrollment for females (Panel (a)) and males (Panel (b)).

Figure A.3: Goodness of Fit: Initial Major Completion Rates by Gender

Share Completing Initial Major
[N} i

STEM Life Science Business Health Other
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(a) % Completing Initial Major: Women
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(b) % Completing Initial Major: Men

Note: The first panel of Figure A.3 compares the observed share of students initially enrolled in different majors who end up
completing those majors to the model-based estimated shares of initial-major completion for females (Panel (a)) and males

(Panel (b)).
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Figure A.4: Goodness of Fit: Employment Rates Among Initial Major Completers by
Household Income
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Note: Figure A.4 presents the observed proportion of students who are employed in 2011 among those who completed their
initial major by whether their household income in the baseline survey was above or below the US household income median in
2001. These proportions are compared to the corresponding model-based simulated share of initial-major completers who are
employed. The first two panels present evidence for below-median households whereas the last two panels present corresponding
evidence for above-median households.
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Figure A.5: Goodness of Fit: Hourly Wages Among Initial Major Completers
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Note: Figure A.5 presents average hourly wages for employed individuals who completed their initial major by whether their
household income in the baseline survey was above or below the US household income median in 2001. These proportions are
compared to the corresponding model-based average wages for initial major completers who are employed. The first two panels
present evidence for below-median households whereas the last two panels present corresponding evidence for above-median
households.

Figure A.6: Gender-Specific Distribution of Latent Math Ability and Self-Efficacy

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) Joint Distribution of 5, and 0sg: Women (b) Joint Distribution of 85 and 8sg: Men

Note: Figure A.6 presents the joint density of the gender-specific math ability and self-efficacy by gender, documenting the
share of individuals pertaining to the gender-specific joint decile of the two latent factor distributions (first two columns of
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Figure A.7: Initial Major Choices by Gender
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Panel A in Table A.6). The first panel presents results for women and the second panel presents evidence for men.

Note: Figure A.7 presents the cumulative distribution function of the latent factors (@) for female and male students enrolled
in different initial majors. The first two panels show evidence for latent math ability, panels (c) and (d) present evidence for
mathematical self-efficacy and the last two panels show the CDF for latent non-cognitive skills.
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Figure A.8: STEM Enrollment Rates by Gender-Specific 8y and 6gg Deciles

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Enrollment Rates: Women (b) STEM Enrollment Rates: Men

Note: Figure A.8 shows the share of women and men initially enrolled in a math-intensive major at each decile of the joint
gender-specific O and Ogg distribution (first two columns of Panel A in Table A.6). The first panel presents results for women
and the second panel presents evidence for men.

Figure A.9: STEM Completion Rates Among Initial Enrollees: by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Completion Rates: Women (b) STEM Completion Rates: Men

Note: Figure A.9 shows the share of women and men who complete a STEM degree after initially enrolling in a math-intensive
major. The share of conditional completers is presented across each decile of the joint gender-specific math ability and self-
efficacy distribution (first two columns of Panel A in Table A.6). The first panel presents results for women and the second
panel presents evidence for men.
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Figure A.10: STEM Completion Outcomes Among Initial STEM Enrollees by Gender
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Note: Figure A.10 presents the cumulative distribution function of the latent factors (@) for female and male students enrolled
in STEM depending on whether they complete a STEM major, switch to a different major or drop out of college altogether.
The first two panels show evidence for latent math ability, panels (c) and (d) present evidence for mathematical self-efficacy
and the last two panels show the CDF for latent non-cognitive skills.
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Figure A.11: Graduation Outcomes Among Initial Non-STEM Enrollees by Gender
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Note: Figure A.11 presents the cumulative distribution function of the latent factors (@) for female and male students enrolled
in non-STEM majors depending on whether they complete their initial major, switch to a different major or drop out of college
altogether. The first two panels show evidence for latent math ability, panels (c) and (d) present evidence for mathematical
self-efficacy and the last two panels show the CDF for latent non-cognitive skills.
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Figure A.12: Hourly Wages by College Major and Age, American Community Survey Data

Lifecycle Hourly Wages by College Major
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Source: American Community Survey, 2011-2012 (Ruggles et al., 2019).
Note: Figure A.12 presents average hourly wages by college major for college graduates aged 25-50. College majors are
aggregated into five categories, encompassing STEM, Life Sciences, Business, Health and the remaining majors.
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Figure A.13: Heterogeneous Returns to STEM Enrollment Across 63, Distribution for Women
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Note: Figure A.13 presents heterogeneous returns to STEM enrollment relative to life sciences, business, health and ‘Other’
majors for women across the latent math ability (65) distribution. Dashed lines in each panel denote the corresponding average
treatment effect parameter. Shaded areas denote 95% confidence intervals.
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Figure A.14: Heterogeneous Returns to STEM Enrollment Across 6, Distribution for Men
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Note: Figure A.14 presents heterogeneous returns to STEM enrollment relative to life sciences, business, health and ‘Other’
majors for men across the latent math ability (67) distribution. Dashed lines in each panel denote the corresponding average
treatment effect parameter. Shaded areas denote 95% confidence intervals.
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Figure A.15: Heterogeneous Returns to STEM Completion for Male STEM Enrollees
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Note: The first panel of Figure A.15 presents heterogeneous returns to STEM completion relative to switching to a different
major (equation (17)) for men. The second panel presents corresponding evidence relative to dropping out of college altogether
(equation (18). Dashed lines denote the corresponding average treatment effect in each panel. Shaded areas denote 95%
confidence intervals

Figure A.16: Complier Types Across Initial Majors
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Note: Figure A.16 presents how the estimated self-efficacy intervention would affect the share of compliers across different
deciles of the math ability distribution who would be switching out of different majors.
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Figure A.17: Estimated Impacts of Policy Intervention on STEM Completion Rates
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Note: The first panel of Figure A.17 presents graduation rates for ‘compliers’ only under the simulated intervention, as their
STEM completion rates would have equaled zero in absence of the policy. The second panel presents the estimated impacts of
the simulated self-efficacy intervention on STEM completion rates for policy ‘always-takers’, as defined in Section 6. Shaded
areas denote 95% confidence intervals.

Figure A.18: Estimated Impacts of Self-Efficacy Interventions on STEM Participation
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Note: Figure A.18 presents the estimated impacts of self-efficacy interventions which would increase women’s mathematical
self-efficacy from 0.05 to 0.5 standard deviations on their STEM enrollment and completion rates.
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Figure A.19: Impacts of Intervention on Hourly Wages by Response Type
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Note: Figure A.19 presents the estimated impacts of the simulated self-efficacy intervention on hourly wages for policy ‘always-
takers’ (Panel A), compliers (Panel B) and ‘never-takers’ (Panel C), as defined in Section 6. Shaded areas denote 95% confidence
intervals.
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B Initial College Enrollment by Gender

B.1 Reduced Form Evidence

To examine whether students differentially select into four-year college enrollment based on their
baseline skills by gender, I take advantage of data from the ELS:2002 survey. In particular, I impose
the same sample restrictions as in Section 2.1, yet instead of restricting the sample to four-year
college enrollees by the second follow-up survey (age 20), I restrict the sample to students who had
completed a high school degree by age 20. As such, the sample size becomes larger, reaching 9,627
individuals, where 4,599 students belong to the main sample (i.e. enrolled in four year college),
1,870 were enrolled in two-year college at age 20, and 3,158 had not yet enrolled in college by age
20. In this sample, a larger share of women (49.7%) than men (45.4%) have enrolled in four-year
college by age 20, fitting in with the existing evidence in the literature.

To examine whether female college enrollees are more positively selected into college on their
skill measures than their male peers, I estimate the following regression:

Test; = a+ fMale; + vCollege; + AMale; x College; + v; (B.1)

where [ measures the extent to which test scores differ by gender in the overall sample, v captures
the extent to which four-year college enrollees are positively selected based on their test scores, and
A recovers whether such selection patterns differ by gender. I estimate equation (B.1) separately
for the eight measures included in the measurement system in the paper, encompassing math test
scores, GPA, math self-efficacy and non-cognitive skill measures.

I present the results in Table B.1. In the full sample, men earn higher math test scores and
have higher math self-efficacy than women, whereas the opposite is true for GPA and in the action
control measure. Moreover, students are positively selected into four-year college enrollment across
these eight measures, with larger differences emerging in math test scores and GPA than in the
non-cognitive skill measures and math self-efficacy. Importantly, the estimated coefficient on the
four-year sample and male interaction is small in magnitude (below 0.08 standard deviations across
all measures), and only significant for GPA. These results thus indicate that while students are pos-
itively selected into four-year college enrollment, the extent to which sorting-into-college patterns
by skill level differ by gender are largely muted. In light of these results, the findings presented in
the paper hold for both male and female four-year college enrollees by age 20.

Table B.1: Sorting into Four-Year College by Skills and Gender, ELS

BY Math F1 Math BY SE F1 SE GPA Control Motivation  Action
1) 2 (3) 4) (5) (6) ) (3)

Male 0.565"*  0.026 0002  0.007  0.069°  0.006 -0.012 0.011
(0.207)  (0.026)  (0.017)  (0.013)  (0.041) (0.017)  (0.017)  (0.017)
College Enrollee 0.942***  0.958***  0.361"* 0.320™* 0.915"* 0.403** 0277  0.345"**
(0.023)  (0.023)  (0.024) (0.024) (0.023)  (0.024)  (0.024)  (0.024)
College Enrollee x Male  0.003 0027 0012 0039  0.083*  0.003 0.044 -0.010
(0.036)  (0.035)  (0.035) (0.037) (0.034) (0.035)  (0.036)  (0.035)
N 9627 9627 9627 9627 9627 9627 9627 9627

Note: Table B.1 presents evidence on the extent to which students sort into college enrollment by age 20 based on their
skills (equation (B.1)). The sample is restricted to ELS 2002 respondents who had completed a high school degree by age 20,
encompassing 9,627 individuals. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.2 Model of College Enrollment and Major Choices

To assess whether the main findings presented in the paper are robust to the inclusion of non-
college-enrollees, I estimate a version of the model introduced in Section 3 which directly accounts
for students’ college enrollment choices. In this model, I posit that a vector of latent abilities,
encompassing students’ math ability, non-cognitive skills and their math self-efficacy, affects their
educational choices and associated labor market outcomes. The alternative version of the framework
also models educational choices sequentially, where upon completing high school, students first
decide whether to enroll in four-year college, enroll in two-year college or not enroll in higher
education altogether (Heckman et al., 2006; Urzua, 2008; Rodriguez et al., 2016). Let VZC;; be the
utility for student i of gender G from enrolling in higher-education level h € H, where VLC;; is given
by:

Vin = BnXin+anbi+ein for heH (B.2)

where Xj;; encompasses household and individual characteristics affecting the higher education
choice, 0; captures the vector of latent ability, and 8? is an error term that is independent of
{Xin;0;} and across the three higher education options. Conditional on {X; 58;}, initial enrollment
choices are unordered and students thus enroll in the initial level with the highest utility: D; ) =
argmazyen Vi

The rest of the model proceeds as the one introduced in Section 3. First, four-year college
enrollees select an initial college major.??>*0 These students then decide whether to continue in
four-year college or dropout and college continuers lastly choose whether to remain in their initial
major or to switch to a different degree. Upon finishing their educational choices, students enter
the labor market, make an employment decision and earn hourly wages. The alternative version of
the model directly follows the structure of educational choices and labor market outcomes intro-
duced in equations (1)-(6). I also posit a measurement system in which observed skill measures are
a linear outcome of students’ latent abilities (6;) and of their background characteristics, directly
following the structure introduced in equations (7)-(9) in the main draft. The identification argu-
ments introduced in Section 3 still hold in this context and I allow for the mean of the latent factors
for male to differ from zero. The model implementation and estimation approach follow from the
model presented in Section 3, where I simulate a sample of 200 from the posterior distribution of
estimated model parameters.

Model Results. I use the re-estimated model parameters and replicate the main results presented
in Section 4. First, in Figure B.1, I present the joint distribution of math ability and self-efficacy.
Fitting in with the results in the main draft, I find a positive correlation between these two latent
skill components, yet with a stronger correlation for men. Among students in the top math-ability
decile, a larger share of men are in the top decile of mathematical self-efficacy (38.4%) compared
to the corresponding share for women (13.3%).

39Two-year college enrollees’ completion outcomes are not directly modeled, as their educational choices are not
the focus of the paper. These students thus enroll in two-year college and I then allow them examine their labor
market outcomes. The same structure holds for students who do not enroll in college by age 20.

497 remark that I additionally restrict the analysis of major choices to three options, encompassing math-intensive
STEM majors, business and other majors in order to reduce the number of parameters to be estimated.
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Figure B.1: Joint Distribution of Latent Math Ability and Self-Efficacy by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) Joint Distribution of 85 and fsg: Women (b) Joint Distribution of 85 and 8sg: Men

Note: Figure B.1 presents the joint distribution of math ability and self-efficacy. The math ability and self-efficacy deciles are
given by the joint distribution encompassing men and women. The figure documents the share of women (Panel A) and men
(Panel B) pertaining to each joint decile of the two latent factor distributions.

Next, I assess whether the STEM enrollment patterns documented in Figure 5 remain similar
when incorporating non-college enrollees as part of the analysis. Figure B.2 presents the share of
students who initially enroll in STEM majors at four-year colleges across the baseline distribution of
their math ability and their self-efficacy. First, I remark that the overall share of STEM enrollment
is lower than in the main model, as this version of the model incorporates the option of initially
starting in a two-year college or not enrolling. These differences are particularly pronounced among
lower-gkilled students, who are more likely to not enroll in four-year college altogether. Nonetheless,
I still find strong evidence that students in the top joint decile of the math ability and self-efficacy
distribution are far more likely to have enrolled in STEM than their lower-skilled peers across both
skill dimensions. In fact, these patterns hold for male and female students, fitting in with the
results presented in Figure 5.

Figure B.2: STEM Enrollment Rates by 63 and 05 by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Enrollment Rates: Women (b) STEM Enrollment Rates: Men

Note: Figure B.2 shows the share of women and men who initially enroll a STEM degree. The share of STEM enrollees is
presented across each decile of the joint math ability and self-efficacy distribution, where the deciles are defined by the joint
distribution of ability encompassing both men and women.
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In Figure B.3, I analyze how math ability and self-efficacy jointly affect the likelihood of STEM
completion for students who started in these majors. Similar to the main model, I still find strong
evidence that higher-math ability students are more likely to successfully complete a STEM degree,
a finding that holds for both men and women. At the same time, I find that math self-efficacy
strongly determines the likelihood of successful STEM completion for women, whereas this skill
dimension is far less consequential for men. As such, since math self-efficacy plays a far stronger role
in driving women’s exit from STEM, and this is not the case for men, the main results regarding
STEM-sorting patterns based on skills remain similar across the two versions of the model. As
such, the results presented in Figures B.1-B.3 show that the main findings in Section 4 hold in an
alternative model which incorporates students’ choice of initial enrollment levels.

Figure B.3: STEM Completion Rates Among Initial Enrollees: by Gender

Math Self-Efficacy Decile Math Self-Efficacy Decile

(a) STEM Completion Rates: Women (b) STEM Completion Rates: Men

Note: Figure B.3 shows the share of women and men who complete a STEM degree after initially enrolling in a math-intensive
major. The share of conditional completers is presented across each decile of the joint math ability and self-efficacy distribution,
where the deciles are defined by the joint distribution of ability encompassing both men and women. The first panel presents
results for women. The second panel presents evidence for men.
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C Identification of the Measurement System

This section presents the identification of the measurement system presented in Section 3. The
identification of the distribution of unobserved ability follows the formal arguments presented in
Carneiro et al. (2003); Hansen et al. (2004); Heckman et al. (2006); Williams (2020). In the mea-
surement system presented in equations (7)-(9), the covariance between all test scores is observed
and relied on as part of the identification strategy. Throughout this section, I keep the conditioning
on X and the gender superscript implicit.

First, note that the covariance between the two observed self-efficacy measures is given by:

COU(SEl,SEQ) = O‘SE,laSE,QO'gSE (Cl)

where agSE represents the variance of the latent math self-efficacy factor. Since there are three

unknown right-hand side parameters to be identified, the covariance between the self-efficacy mea-
sures does not suffice for identification. As such, I further rely on the six observed covariances
between the two self-efficacy measures and three available non-cognitive skill measures, which are
given by:

Cov(SE;, NCy) = OKSE,jOéSE,kUgSE + ASEjINCKkTOsE Onc (C.2)

where 0¢,, 0 captures the covariance of the latent math self-efficacy and non-cognitive skill factor.
Equations (C.1)-(C.2) indicate there are seven observed covariances across the self-efficacy and non-
cognitive skill factors, yet ten parameters need to be identified (eight factor loadings, the variance
of Ok and the covariance of fgr and Oy¢). Since latent factors have no scale of their own, Carneiro
et al. (2003) note that one of the factor loadings can be normalized to unity to set the scale of
each latent factor (agp,1 =1 and yveo1 = 1).41 As discussed in Section 3.2, I follow the reduced
form evidence presented in Figure A.l and additionally assume that instrumental motivation is
a dedicated measures of latent non-cognitive ability (a;qv%z = 0). As such, the remaining seven
parameters can be identified from the observed covariances. Next, note that the covariance between
observed non-cognitive measures has the following structure:

2 2
Cov(NCy, NCy) = QsE kQSE kK Opgy + INCEKINCK Tty + (ASERYNC K + ASERYNCE)T055,00dC-3)

where Uch captures the covariance of the latent non-cognitive ability factor (fx¢). Since all other
right-hand side parameters are identified from the covariances introduced in equations (C.1)-(C.2),
JgNC is identified from any covariance between the observed non-cognitive skill measures.

As shown in equation (9), the three math measures (including the two test scores and high
school GPA) load on all three factors. As such, nine factor loadings need to be identified along
with the variance of the math ability factor and two remaining covariances between 6,; and g
as well as the covariance between 6, and Oy¢. First, note that the covariance across the math
measures is given by:

2 2 2
Cov(M;, My) = QspiasEN0h,, + YNCIYNCY Toye T MMM 0, + (ASEIVNCY + ASEVINC) 0055 05

H(asE MMy + ASEVIML)00s,.00 + (YNCINMY + YNCIIML)T08c,00r

where g, 9,, denotes the covariance between fgr and 0y and og, 0,, captures the covariance
between Oyc and 6,;. Since the three covariances across observed math test scores do not suffice

for identifying the remaining unknown parameters, I further take advantage of the covariance of

41T normalize the loadings for the baseline self-efficacy measure and for control expectation, respectively.
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math test scores and non-cognitive skill measures, which are given by:

2 2
Cov(M;, NCy) = asplQsERTh,, + INCIYNCKkTGye T (ASEIYNC K + ASERYNC)T05p.0nc
H(OSERNIM)T0s5,00 T (YNCKIMI)T0xc 00 (C.5)

As such, the twelve covariances defined in equations (C.4)-(C.5) allow me to recover the remaining
factor loadings (I normalize nys,; = 1 for the baseline math test score), the variance of 6y (J%M)
and the two remaining covariances of the latent factors.?> Upon securing identification of the
factor loadings, along with the variance and covariance of the three latent factors, I can take
advantage of the variance of each observed measure to identify the variance of the corresponding
error terms (U%Ejvf’]?vckv 012\/11). Upon identifying all the factor loadings and the variance of each
component of latent ability, I rely on the identification arguments presented in Freyberger (2018)
to non-parametrically identify the distribution of the latent factors and error terms.*3

The correlation between unobserved abilities is identified through the following linear relation-
ships between the latent factors:

Onc = 00sg + Oy (C.G)
Oy = Pplsp + 0y + 0y (C.7)

where (fy, 0y) are additional factors assumed to be independent of (0sg, Onc, 0ar). Note that each
non-cognitive skill measure can be re-written as:

NCy = asprbse + Ynerdne + encik
NCy, = asgibse + vnek(00se + 0v) + enck = dserlse + v kv + enck

where ¢sp 1 = aser+7YNnckd, and asg i and yyc i are identified through the arguments presented
above. The three equations for the observed non-cognitive skill measures have four unknowns (§
and aggy for the three measures). As discussed in Section 3, § is identified by assuming that
instrumental motivation is a dedicated measure of non-cognitive skills (agg = 0). Similarly, each
math test score can be re-written as:

M), = asg0se +ynefne + naifa + ey
M; = asgi0se +Ynci(00se + 0v) + nai(dbse + Oy + 0u) + enry
M; = &spfse + (Yveg + n)0v + naibu + e

where {sp; = asp+vnci0+n0ar,¢. Following the arguments outlined above, there are three math
measures and four unknowns (7 and the three agg; loadings); n is identified by upon assuming
GPA does not directly depend on latent math self-efficacy (asg; = 0). The model is estimated
using the three orthogonal factors, 6gg, 0y, 0y, and the distribution of the correlated factors is
recovered through the convolution of the these three factors.

42 As discussed in Section 3, I additionally normalize the self-efficacy loading of high school GPA to zero (nar,3 = 0).
“Freyberger (2018) extends the identification arguments in Kotlarski (1967) to a context with correlated factors.
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D Gender Gaps in Latent Abilities

This appendix presents the formal argument behind the identification of gender differences in the
latent ability vector, which allows for a direct comparison of the estimated latent factors across
males and females. In particular, consider the self-efficacy measure j score for males m and females

f:

SE]" = o¢p ;j + a5y j05E + €5k ; (D.1)
SEjf = QpéE,j + agE,jeéE + eéE,j (D-2)

where the dependence on observables for simplicity is omitted for simplicity and the mean of the
error terms is equal to zero. Let p¢’; and ué g denote the means of latent self-efficacy for men and
women, respectively, with Agp = 'y — ,ug g capturing their difference. As discussed in Section 3,
identifying Agg requires a scalar invariance assumption, which in this case amounts to assuming
CSp; = sk j- As such,

E(SETY) — E(SE];) = (¢85, — ¢hp,) + o8 ;Ase (D.3)

Since the left-hand side in (D.3) can be computed from the observed self-efficacy measures and the
factor loadings (O‘?E, j) are identified through the arguments in Appendix C, assuming that ;ﬂ; =0
(or any other normalization) allows me to directly identify Agg. The same intuition follows for the
identification of the differences in the means of latent non-cognitive skills (0ny¢). In this case, for
non-cognitive skill measure k:

NC' = ook + @sp108E + YNerfNe + eNe (D.4)
f_ f f f f f f
NC = encr T 2spplse + IvorIne + encr (D.5)

Letting p7~ and M{VO capture the means of non-cognitive skills for men and women, respectively,
the difference is similarly given by: Ayc = o — M{VC' Assuming scalar invariance and normalizing
M{vc to equal zero implies that the gender gap in non-cognitive measure k is given by:

E(NC}'") — E(NCY{) = alfp ;Ask + 1R xne (D-6)

where Agp is identified in equation (D.3), the factor loadings are identified through the arguments
in Appendix C and the left-hand side can be computed directly in the data, allowing for the
identification of An¢. Lastly, the same arguments follow for the identification of differences in
latent math ablity (657). For math test score :

M™ = @y + a0 + YNciONe + marfhr + ey (D.7)

f_ f f f f f f pf f
Mj =y + asp s + Inedne + Mt + e (D.8)

with p7; and u@ denoting the means of latent math ability by gender and the difference being
f

given by: Ay = pfy — py,. The measurement invariance assumption and the normalization of the
mean of women’s latent math ability to equal zero implies that for math test score m the gender
gap is given by:

E(M™) — BE(M{) = ap Asp + YR Ane + 185, Au (D.9)
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where the left-hand side is computed in the data. The gender gap in latent self-efficacy and non-
cognitive skills are identified in equations (D.3)-(D.6), and the factor loadings are already identified
(Appendix C), implying that Ay is identified as well. The empirical implementation of (D.1)-(D.9)
first assumes the factor means for both genders are equal to zero, and the assumption is then relaxed
along with the imposition of scalar invariance to recover the average gender gap for each latent
factor. The identification of the gender differences in the latent abilities requires having access to
one observed measure for each skill dimension. Nonetheless, since 1 observe multiple measures for
each skill construct, I follow the logic outlined in this section and compute the gap in latent skills
by averaging across all measures that correspond to a latent factor.
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E Details on MCMC Estimator

In this section, I describe the MCMC algorithm used for model estimation (Hansen et al., 2004;
Heckman et al., 2006). For simplicity, I introduce the estimator in the context of a standard Roy
model, encompassing the option to pursue a STEM major (S) or a non-STEM major (S), with one
latent factor 8. The model is given as follows:

1 = Zy+C,

XoBso+ X18s1 + €5,

Y = XoBno+ X1Bn1+en.
D = 1[I >0

»
|

where I captures the net value of pursuing a STEM major, where I > 0 indicates STEM partici-
pation ({D =1} = 5) and I < 0 denotes non-STEM participation ({D =0} = N).
Assume a factor structure of the form:

C = 0Oac+Uc
es = bOag+ Ug
ey = Oay+Upn

where Ug Il Uy L Ug, and 6 1L (Un,Ug,Uc), and

Ug ~ N(O’U?]S)y
Un ~ N(O,O'%]N),
Uc ~ N(0,0¢,).

As a measurement system, consider the test score equation:
T=Wn+6+Upn

where Up, ~ N (0, U?JTl).
Thus, the likelihood function can be written as:

f(Y;.T;,D;;0) = / F(Y5, Ty, Ds10;)dF (65)
= /f(Yj,Dj!9j)f(7}|9j)dF(9j)-

Under the assumptions outlined above:

rc.0:0) = 1 [ [ b eon (<t win-07)
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1 1 1-D,
[\/zm P <_202(Y04‘ —XBN - O‘Nej)2> 1—@(-Zy—acty)|  dF(9;).
unN uN

The block structure associated with the likelihood function is thus:

f(Oé,B,T,")’,?],H/Y,T,D) f(YTD|a 677-7777 ) ( /6’7—7’77?9)
fY, Dla, B,7,7,n,0) f (T, B, 7,v,1,0) f (e, B, T,7,m,0)
fY|D,a,B,7,7,1,0)f(Dl|a, B,7,7,1,0)

( ( )

f Y|D7a71877—7’)/7,’7’9)f D|a’677—’77n’0

R R R R

/2
= T 07 oxp ~Tus Yy, (Y = XiBs — asb;)?
(D;=1)

X usDrO)/ exp [ —muy Y (Vi = XiBy — anty)?
(Di=0)

X H (@ (= Ziy — )] 7 [(1 = @ (—Ziy — )] 7"

XTST/f exp (—TUTI(Z(TZ- — Win — 9i)2)

XT}L/ exp(—7(D _ 07) exp(—Tug) exp(—Tuy ) exp(—Tuy,)
1/2 1/2

(3] e} () ot

) )

where I explicitly impose a set of prior distributions. Using the block structure, the formula for
the conditional posteriors is given by:
1. Outcome equations:

f(ﬁi/aia’riaanVaD) o exp —T; (Y]*X]/Bzfej)Q fOTiZS,N
7:D=i
SO
-1
,87,/ ~N E].D 1 J(yj N E Z IL'] 7 (El)
Z]D iLjx j j:D=i

FaifBomi Y wexpd —2m S (5 — 258 — 036 — 202 fori= s N

7 iy Ty Jy L4 X -3 (3 (7] T a7AY - 9 .

5 Pl 2" i 77370

7:D=1i

Let ?:Y—Xﬁ, thus

1 , 11
CXP Y 75w ‘DZ (Y; — cifj) T 910%
7:D=1

A32

f(T|e, B,7,7v,m,0) f(a, B,7,7,7,0)
f(T’aa B) Ta ’Y, 777 H)f(Oé, Bv T)r% 7]7 0)



Thus
ai//Bi7Ti797Y7D ~ N(ahil) (E2)

-1
whereZ—(TZ]Dlj 1) andal—2< Z]Dlejy])
2. Measurement system:

N
f(n/TT7‘9a VVvT) X exp | =77 Z(T] - an - QJ)Q
j=1
then

n/.NN((W’W) (W(T —0)), 7, (WW)™1) (E.3)

) 'U«T1<

3. Decision model:
Let D* be the latent variable. The completion for D. is thus defined as:

f(v,ac, D*/D) o f(D/ag, v, D*) f(D*/ac,7) f(7)f(ac)

1) Y2 11, L) o D,
= (10> eXP{Qlo(OlC) }1—11[ (Dj > 0)¢ (D' iV OZCQJ')] ’
j:
* * 1-D;
(LD} < 0) (D] = Zjy = ach;)]

Then,

N

f(v/ac,6,D*, D) H ¢ (D — act;)
1 2
52 (D = Zy = act)
7j=1
Therefore, . .
v/.~N(Z'Z2)"" (2" (D* - 0ac)),(Z'2) ) (E.4)
flac/v, D" D)« exp{— (ac) }H¢ ~ Zjy — ach))
N
1 2 11
) Z — 457 Oécej) - iﬁ(ac)z

7j=1

Following the arguments presented in (E.2):
ac/. ~ N(ac,ic) (E.5)

where S = (62 + ) and a¢ = S0 (0 (D* — Z7)).

A33



Lastly,

f(D*/ac, 0,7, D)

[1(D} > 0)¢ (Dj -

Therefore, D* can be sampled from:

4. Precisions:

7).~ G

Ziy — act;)]”

pr— ] TNooo)(Zjy+ by, 1) if Dj=1=5
J TN( 000]( ]’}/+O[v9j,].) lfDJIOEN
Do 1 .
Zj.g +2, (3 (yj —xjBi — cit)y)® | +1] for i=N,S
j:D=i
N
N 1
o)~ G| 2 2;(1}—%77—9]')2 +1
N
N
/.~ G| G20 +1

Lastly, the posterior for § becomes:

;/..D;j =1 Til/Qexp< (Y X;Bi — o )2>

where (9;

1 2
ol (we; — 9j> +airr(07 - 0))?

and

1/2

7'}/2 exp(—7f02)

o eXp( (Y — X8 —
exp ((Dj -

(0 Tu,

Q; ) )GXP (TT(T Win — 9) )
Y — 04(;0j) ) exp(TfH?)

= €exp <Tz(9 - o[ZH ) + Tur (9;* - 9]')2

Zj~. Notice that:

2

(O‘?Tui + a?TuTl) (ej -

(o

2
— 9j> + TfQJZ = (& +7y) (0]- —
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2Tui + 0‘?

kkk

rof ) (1,
(67

Tur:)

*
aiTuﬁj + Ty, 0

+ ((9;** — 0409]')2 + Tg@?) )

1 N 2
Tr €Xp <_7—uT12(Tj - an - aj)2) exp <2 (Dj — 4 — QCHJ') >

Qi

2
acTf

(o% + 7y

))2_(

a% +7¢)

_ 70**

<_

).

ok \ 2
‘]>

(CEZTuq- + a%TuTl )

(E.8)

(E.9)



exp (Ti(ﬁ; — aiHj)Q + TT(H;* — 9]')2 + (9;** — 04093-)2 + Tf@?) X

041'7'1'9;-( + TTQj* > 2
(a7 + 7r)

et o (o 220 )

exp ((a?n +7r) <9j -

And since:

exp (7'@-(9;? — %9]')2 + TT(Q;* — 9j)2 + (9;** — Ozcej)Q + Tf@?) o

2
it + 0 + ace;f**>
)

L 9
exp | —z (i +717 +aC +714) | 05 —
P 2( gl f><j (027 + Tupy + a2 +77)

yielding:

* k% *kk
OéiTuin + atTuTlﬁj avOj

2 2
(a Tu; + Ty + Q2+ 7'9)

i

0;/..Dj=i~N ( 02Ty, + af Ty, ol + 7'9)_1> . (E.10)

The Gibbs sampling procedure becomes:

1. Choose initial values for the parameters, and an arbitrary first draw for the
factor. For example, 6™ ~ N(0,1))

For m=1,M

1. Sample D;(m) for j=1,...., N according to (E.6)
2. Sample Hj(-m) for j=1,...., N according to (E.10)
3. Sample BZ-(m) (t=S5,N) according to (E.1)

4. Sample al™ (t=5,N) according to (E.2)

5. Sample (™ according to (E.3)

6. Sample ~("™) according to (E.4)

7. Sample a. ’ according to (E.5)

8. Sample 7™ (t=1,2) according to (E.7)

9. Sample T}m) according to (E.8)

(m)

10. Sample T according to (E.9)

Iterate over m until convergence.
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F Estimated Model Parameters

Table F.1: Measurement System Loadings: Women

BY SE F1SE BY Math F1 Math GPA Control Motivation Action
Constant -0.44 -0.52 -1.06 -1.24 -0.35 -0.25 0.16 -0.11
(0.10)  (0.15) (0.12) (0.12) (0.13)  (0.13) (0.15) (0.14)
Both Parents 0.09 0.10 0.13 0.12 0.20 0.10 0.05 0.10
(0.04)  (0.05) (0.05) (0.05) (0.05)  (0.05) (0.06) (0.05)
HH Income -0.01 -0.00 0.10 0.13 -0.07 0.04 -0.05 -0.03
(0.03)  (0.04) (0.04) (0.04) (0.04)  (0.04) (0.05) (0.05)
Parental Education 0.01 0.02 0.06 0.06 0.03 0.01 -0.01 0.01
(0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01) (0.01) (0.01)
Minority 0.02 -0.03 -0.62 -0.56 -0.51 0.08 0.02 0.10
(0.04)  (0.05) (0.04) (0.05) (0.05)  (0.05) (0.06) (0.05)
Osk 1.00 0.52 0.06 0.06 0.00 0.33 0.00 0.09
(0.00)  (0.02) (0.02) (0.02) (0.00)  (0.02) (0.00) (0.03)
One 0.00 0.00 -0.05 -0.05 0.27 1.00 1.15 1.41
(0.00)  (0.00) (0.04) (0.04) (0.04)  (0.00) (0.05) (0.06)
Onr 0.00 0.00 1.00 1.19 0.65 0.00 0.00 0.00
(0.00)  (0.00) (0.00) (0.03) (0.03)  (0.00) (0.00) (0.00)
Sample Size 2,615

Note: Table F.1 presents the estimated parameters from the measurement system presented in Section 3.2. I obtain these
estimates by simulating 500 values of parameters using the estimated posterior from the MCMC estimator. The ‘Sample Size’
Standard errors in

row denotes the number of female students included in the ELS sample used to estimated the model.

parenthesis.
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Table F.2: Measurement System Loadings: Women

BY SE F1SE BY Math F1 Math GPA Control

Motivation Action

Constant 0.06 -0.32 -1.00 -0.75 -0.56 -0.37 -0.32 -0.39
(0.10)  (0.17) (0.14) (0.13) (0.16)  (0.16) (0.18) (0.17)
Both Parents 0.01 0.04 0.10 0.05 0.17 0.05 0.14 0.11
(0.03)  (0.06) (0.05) (0.05) (0.06)  (0.06) (0.07) (0.07)
HH Income 0.02 -0.05 0.09 0.15 -0.04 0.01 0.03 -0.12
(0.03)  (0.06) (0.05) (0.04) (0.06)  (0.05) (0.06) (0.06)
Parental Education 0.01 0.03 0.07 0.05 0.02 0.02 0.01 0.02
(0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01) (0.01) (0.01)
Minority -0.02 -0.10 -0.52 -0.52 -0.59 -0.01 0.05 -0.03
(0.03)  (0.07) (0.05) (0.05) (0.06)  (0.06) (0.07) (0.07)
Osk 1.00 0.54 -0.04 -0.10 0.00 0.52 0.00 0.07
(0.00)  (0.02) (0.03) (0.03) (0.00)  (0.02) (0.00) (0.04)
One 0.00 0.00 -0.22 -0.21 0.39 1.00 1.77 2.12
(0.00)  (0.00) (0.06) (0.06) (0.07)  (0.00) (0.10) (0.12)
Onr 0.00 0.00 1.00 1.15 0.55 0.00 0.00 0.00
(0.00)  (0.00) (0.00) (0.03) (0.03)  (0.00) (0.00) (0.00)
Sample Size 1,984

Note: Table F.2 presents the estimated parameters from the measurement system presented in Section 3.2. I obtain these

estimates by simulating 500 values of parameters using the estimated posterior from the MCMC estimator.

The ‘Sample

Size’ row denotes the number of male students included in the ELS sample used to estimated the model. Standard errors in

parenthesis.
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Table F.3: Estimated Loadings in Major Choice Equations

Male Female P-Value
O Ose Onc O Ose Onc Oy Ose  Onc
(1) (2) 3) (4) (5) (6) M ®
Panel A. Initial Major Choice
STEM 0.443 0.344  -0.365 0.482 0.305  -0.121 | 0.763 0.740 0.229
(0.078) (0.085) (0.151) | (0.103) (0.081) (0.135)
Life Sciences  0.454 0.002 0.308 0.255 0.190 0.122 0.134 0.135 0.434
(0.102) (0.105) (0.206) | (0.085) (0.069) (0.119)

Business 0.029 0072  0.167 | -0.096 0298 -0.263 | 0.493 0.020 0.013
(0.067) (0.074) (0.140) | (0.071) (0.063) (0.101)
Health 0.058 -0.025 0569 | -0.126  0.133  -0.045 | 0.129 0.231 0.024

(0.104) (0.118) (0.255) | (0.062) (0.059) (0.094)

Panel B. College Continuation
STEM 0.464  -0.174 0472 1.126 0.248 0.444 | 0.082 0.204 0.957
(0.143) (0.154) (0.264) | (0.353) (0.294) (0.446)
Life Sciences  0.701  -0.299  0.309 0.836  -0.328 0.664 | 0.730 0.939 0.631
(0.286) (0.326) (0.665) | (0.266) (0.197) (0.321)

Business 0266  0.027 0.149 | 0909 -0.391  0.627 | 0.002 0.066 0.265
(0.128)  (0.150) (0.342) | (0.169) (0.171) (0.259)

Health 0.991 -0.629 0.886 | 0.525 0.078  0.037 | 0.397 0.370 0.625
(0.533) (0.781) (1.730) | (0.134) (0.110) (0.174)

Other 0315 -0.106 0.388 | 0.496 -0.012  0.199 | 0.038 0.322 0.315

(0.064) (0.075) (0.161) | (0.059) (0.058) (0.097)

Panel C. Initial Major Completion
STEM 0.403 0.068  -0.020 | 0.534 0.437  -0.801 | 0.712 0.237 0.136
(0.152) (0.149) (0.268) | (0.320) (0.274) (0.450)
Life Sciences  0.959  -0.406  0.846 0.352 0.142 0.294 | 0.102 0.079 0.361
(0.303) (0.264) (0.537) | (0.214) (0.166) (0.276)

Business 0.285 -0.196 -0.095 | 0.122  0.180 -0.182 | 0.436 0.041 0.802
(0.131) (0.124) (0.265) | (0.163) (0.135) (0.224)

Health 0782 -2.039 3.371 | 0.166 -0.226 0.311 | 0.556 0.240 0.234
(1.038) (1.537) (2.563) | (0.138) (0.112) (0.167)

Other 0102 -0.173  0.361 | -0.038 -0.118  0.255 | 0.547 0.568 0.579

(0.078)  (0.077) (0.164) | (0.072) (0.058) (0.098)

Note: Table F.3 displays the estimated factor loadings in college major choice (Panel A), college continuation decision (Panel
B) and initial major completion (Panel C) for men (columns 1-3) and women (columns 4-6) across the latent math ability, math
self-efficacy and non-cognitive ability factors. The last three columns present the p-values from a test of equality of the factor
loadings for males (a™) and females (af) where Hp : o™ = af and H; : o™ # of.
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Table F.4: Estimated Loadings in Employment Equations

Male Female P-Value
O Ose Onc O Ose Onc Oy Ose  Onc
(1) (2) 3) (4) (5) (6) M ®
Panel A. Initial Major Completers
STEM 0.035 0.358  -0.510 | -0.514 -0.412  0.768 | 0.457 0.099 0.124
(0.220) (0.203) (0.364) | (0.704) (0.420) (0.746)
Life Sciences -1.725 1.008 -2.256 | -0.572  0.138  -0.061 | 0.173 0.169 0.091
(0.766) (0.586) (1.231) | (0.357) (0.236) (0.415)

Business 0029 -0.171 0.658 | 0.064 0.162 -0.095 | 0.905 0.210 0.101
(0.190) (0.185) (0.361) | (0.224) (0.190) (0.284)
Health -0.162  0.408  0.096 | 0.192  0.145 -0.189 | 0.906 0.937 0.925

(3.000) (3.342) (3.005) | (0.225) (0.181) (0.293)

Panel B. Major Switchers
STEM 0.388 0.075  -0.127 | 0.725 6.758  -4.957 | 0.870 0.003 0.054
(0.258) (0.273) (0.540) | (2.048) (2.203) (2.443)
Life Sciences  0.102  -0.258  1.227 0.936 0.225  -3.422 | 0.406 0.582 0.098
(0.700) (0.596) (0.928) | (0.720) (0.642) (2.646)

Business 0.151 -0.328 -0.350 | 0.878 -0.416 1.331 |0.109 0.874 0.142
(0.289) (0.279) (0.783) | (0.573) (0.477) (0.835)

Health 1.671  -2.223 2288 | 0.363 -0.460 0.120 | 0.148 0.131 0.302
(0.872) (1.149) (2.081) | (0.239) (0.208) (0.277)

Other 0.167  0.306 -0.611 | -0.109  0.037  -0.077 | 0.804 0.271 0.257

(0.168) (0.192) (0.396) | (0.163) (0.151) (0.254)

Panel C. College Dropouts
STEM 0.082 1.193  -4.867 | 3.366  -1.597  0.219 | 0.178 0.171 0.145
(0.493) (0.853) (2.139) | (2.387) (1.848) (2.752)
Life Sciences  3.019 3.299  -1.624 | 5.009 -4.170 -2.151 | 0.550 0.037 0.906
(2.544) (2.868) (3.567) | (2.269) (2.126) (2.697)

Business -0.309  -0.020 0.137 | 1.655 -1.485  1.298 | 0.088 0.286 0.626
(0.536) (0.786) (2.021) | (1.017) (1.125) (1.266)

Health 0419 3270 2176 | 0.665 0.096  0.066 | 0.685 0.337 0.505
(2.661) (3.291) (3.139) | (0.278) (0.255) (0.387)

Other 0221 -0.122 -0.424 | 0.117 0133  0.163 | 0.537 0.174 0.107

(0.122) (0.144) (0.295) | (0.116) (0.120) (0.213)

Note: Table F.4 displays the estimated factor loadings in the employment choice equations for men (columns 1-3) and women
(columns 4-6) across the latent math ability, math self-efficacy and non-cognitive ability factors. The last three columns present
the p-values from a test of equality of the factor loadings for males (a™) and females (af) where Hp : a™ = af and

Hi : a™ # af. Panel A presents the loadings for initial major completers, Panel B for initial major switchers and Panel C for
college dropouts.
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Table F.5: Estimated Loadings in Wage Equations

Male Female P-Value
O Ose Onc O Ose Onc Oy Ose  Onc
(1) (2) 3) (4) (5) (6) M ®
Panel A. Initial Major Completers
STEM 0.082  -0.048 -0.023 0.238 0.035 -0.172 | 0.512 0.678 0.610
(0.065) (0.065) (0.102) | (0.229) (0.189) (0.274)
Life Sciences -0.003 -0.144  0.076 | -0.077 0.114 0.044 | 0.785 0.226 0.951
(0.216) (0.180) (0.482) | (0.164) (0.114) (0.203)

Business -0.047 -0.006 0.082 | 0.094 -0.010 0.067 | 0.081 0.957 0.915
(0.054) (0.053) (0.118) | (0.060) (0.051) (0.075)
Health 0.378 -0.099  0.132 | 0.091  0.074 -0.028 | 0.493 0.773 0.855

(0.411) (0.597) (0.867) | (0.081) (0.053) (0.096)

Panel B. Major Switchers
STEM -0.059  0.095 -0.078 | 0.148 -0.174 0.208 | 0.481 0.353 0.492
(0.179) (0.137) (0.254) | (0.233) (0.255) (0.330)
Life Sciences -0.094  0.169 0.348 0.087  -0.042 -0.032 | 0.655 0.494 0.438
(0.370) (0.279) (0.443) | (0.166) (0.132) (0.210)

Business 0.090 -0.071 0.215 | 0.088  0.005 0.045 |0.375 0.589 0.550
(0.086) (0.085) (0.204) | (0.181) (0.112) (0.198)

Health 0127 0192 0497 | 0120  0.007 0.185 | 0.454 0.606 0.726
(0.318) (0.351) (0.884) | (0.086) (0.075) (0.097)

Other 0.027 -0.074 0.146 | 0.241 -0.038 0.128 | 0.016 0.675 0.900

(0.063) (0.066) (0.113) | (0.062) (0.055) (0.087)

Panel C. College Dropouts
STEM -0.125  0.012 0.117 0.000 0.000 0.000 | 0.344 0.933 0.632
(0.132) (0.143) (0.244) | (0.000) (0.000) (0.000)
Life Sciences  0.000 0.000 0.000 0.358 0.036 0.595 | 0.380 0.894 0.241
(0.000) (0.000) (0.000) | (0.408) (0.270) (0.507)

Business -0.100  0.156  0.066 | -0.040 -0.005  0.220 | 0.800 0.532 0.789
(0.152)  (0.196) (0.518) | (0.181) (0.167) (0.250)

Health 0406  0.133 0489 | 0.284 -0.099 0.128 | 0.919 0.930 0.801
(1.191) (2.655) (1.423) | (0.142) (0.113) (0.188)

Other 0111 -0.026 -0.032 | 0.025 0.017 -0.027 | 0.062 0.610 0.975

(0.053) (0.070) (0.137) | (0.050) (0.047) (0.080)

Note: Table F.5 displays the estimated factor loadings in the hourly wages equations for men (columns 1-3) and women (columns
4-6) across the latent math ability, math self-efficacy and non-cognitive ability factors. The last three columns present the p-

values from a test of equality of the factor loadings for males (a™) and females (af) where Hp : o™ = of and H; : a™ # of.
Panel A presents the loadings for initial major completers, Panel B for initial major switchers and Panel C for college dropouts.
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